
Sponsored through Framework Programme Sixth (Call 5) by

Document Information

Date : Mar 15, 07
Version: 1.3
Pages : 88
Revision: 292

Owning Partner:
IESE

Author(s):
Marcus Ciolkowski, Martín Soto (IESE),
Jean-Christophe Deprez

Reviewer(s):
FUNDP

To:
CONSORTIUM

Purpose of distribution:

The QUALOSS Consortium consists of: CETIC (BE), Facultés
Universitaires Notre Dame de la Paix à Namur (BE), Universidad Rey
Juan Carlos (ES), Fraunhofer IESE (DE), ZEA Partners (BE), MERIT
(NL), AdaCore (FR), PEPITe (BE)

Printed
on 03/15/07 at 05:30:24 PM

Status: Confidentiality:

[
[
[
[

X

]
]
]
]

 Draft
 To be reviewed
 Proposal
 Final/Released

[
[
[

X]
]
]

 Public
 Restricted
 Confidential

- Intended for public use

- Intended for QUALOSS consortium only

- Intended for individual partner only

Deliverable ID: D1.2

Title:

Measurement Requirements Specifications

(Specification of Goals for the QualOSS Quality Model)

A deliverable of Task 1.2

 Copyright $QUALOSS Consortium

Measurement Requirements Specifications

Deliverable ID: D1.2

Page : 2 of 88

Version: 1.3
Date: Mar 15, 07

Status : Proposal
Confid : Restricted

Deliverable: D1.2

Title: Measurement Requirements Specifications

Executive Summary:
This document describes the work done and results obtained in task 1.2 (“Goal of measurements”) of the
QualOSS project. We review relevant definitions of robustness and evolvability in F/OSS assessment
approaches and in the state of the art and practice of quality models. Additionally, we take into account
stakeholders' perceptions and requirements through a series of interviews.
Goals and requirements for the QualOSS model are defined in terms of (a) business and measurement
goals, and (b) a consolidated definition of quality characteristics for evolvability and robustness from related
work and from stakehoders' views, and (c) an initial plan for validation of the QualOSS model.

Further work is still required. In particular, the QualOSS model needs to be further refined into metrics; this
is part of task 1.3. We foresee that part of task 1.3 will be to develop an assessment method for evaluating
the community maturity, as approaches to evaluate associated processes have so far not been considered
in F/OSS assessment methods.

Section 1 presents the motivation of task 1.3, and explains how the tasks in workpackage 1 collaborate to
produce the initial QualOSS model.

Section 2 defines the terminology used in the remainder of the report.

Section 3 presents related work on quality models relevant for defining robustness and evolvability of
F/OSS project. It is divided into two parts: One part is focused on assessment methods for F/OSS projects
(QSOS; OSMM, and OpenBRR), while the second part describes the state of the art and practice in quality
modelling (McCall and Boehm, DGQ, FURPS, NASA SATC, and ISO 9126).

Section 4 describes robustness and evolvability from stakeholders' viewpoints. In particular, it presents the
results of a series of interviews conducted as part of task 1.2. These interviews were aimed at deriving
usage scenarios for F/OSS components (i.e., how stakeholders intended to use F/OSS products), and at
evaluation criteria used by stakeholders (i.e., at how stakeholders evaluate whether F/OSS products are
suitable).

Section 5 presents the consolidated requirements for the QualOSS model; including the initial version of
business and measurement goals, and the resulting QualOSS definition of robustness and evolvability that
will be used as basis for D 1.3.

Section 6 contains the initial validation plan, while Section 7 summarizes and concludes this report.

The Appendix contains the questionnaire used to conduct the interviews, as well as the interview results.

 Copyright QUALOSS Consortium

2

Measurement Requirements Specifications

Deliverable ID: D1.2

Page : 3 of 88

Version: 1.3
Date: Mar 15, 07

Status : Proposal
Confid : Restricted

CHANGE LOG

Ver. Date Author Description

0.1 15/09/06 Marcus Ciolkowski Initial proposal for structure

0.2 20/09/06 Jean-Christophe Deprez Add notes to Section 3
0.9 08/03/07 Marcus Ciolkowski, Martín Soto Draft version

1.0 12/03/07 Flora Kamseu First review

1.1 13/03/07 Marcus Ciolkowski Rework and completion

1.2 15/03/07 Flora Kamseu Second review
1.3 15/03/07 Marcus Ciolkowski Rework, anonymization,

security aspects refined

APPLICABLE DOCUMENT LIST

Ref. Title, author, source, date, status Deliverable
Identification

 Copyright QUALOSS Consortium

3

Measurement Requirements Specifications

Deliverable ID: D1.2

Page : 4 of 88

Version: 1.3
Date: Mar 15, 07

Status : Proposal
Confid : Restricted

TABLE OF CONTENTS

1 Introduction..6
1.1 Motivation...6
1.2 Goal...6
1.3 Strategy For Workpackage 1..6
1.4 Approach..8
1.5 Structure of the Deliverable..8

2 Terminology..9
2.1 GQM..9
2.2 Software Quality...12
2.3 Software Quality Models..13
2.4 Structure of a Quality Model...15
2.5 Measurement...17

3 Quality Models State of the Art...17
3.1 Definition of Evolvability and Robustness from F/OSS Assessment Methodologies.............17

3.1.1 QSOS ...17
3.1.2 Open Source Maturity Model (Cap Gemini) ..20
3.1.3 Open Business Readiness Rating (OpenBRR) ...21
3.1.4 Comparing QSOS, OSMM and OpenBRR...24

3.2 Definition of Evolvability and Robustness from the State of the Art and Practice.................28
3.2.1 The Historic Models: McCall and Boehm...28
3.2.2 Quality Model of the Deutsche Gesellschaft für Qualität..30
3.2.3 FURPS/FURPS+..33
3.2.4 Quality Model of the NASA SATC..37
3.2.5 The Standard: ISO9126...38

3.3 Discussion..39

4 Results From Interviews..39
4.1 Usage Scenarios ...40
4.2 Quality Model From Interviews...41

5 Consolidated Measurement Requirements for QualOSS ...42
5.1 Business Goals..42
5.2 Measurement Goals...43
5.3 Definition of QualOSS Quality Indicators..44

5.3.1 Rationale..45
5.3.2 Evolvability...45
5.3.3 Robustness..48
5.3.4 Quality Factors Not Considered by QualOSS..50

6 Validation Plan..50
6.1 Goal Category 1: Evaluation of appropriateness of QualOSS model....................................50
6.2 Goal Category 2: Evaluation of QualOSS model impact:...51

7 Summary and Conclusions...52

 References...54

Appendix A: Usage Scenario Interview Sheet...57
 Instructions...57

 Copyright QUALOSS Consortium

4

Measurement Requirements Specifications

Deliverable ID: D1.2

Page : 5 of 88

Version: 1.3
Date: Mar 15, 07

Status : Proposal
Confid : Restricted

 Organizational Information...57
 Interview Introduction...57
 Interview Questions..57

Appendix B: Interview Results...61
 Interview 1..61

 Organizational Information..61
 Interview Questions..61

 Interview 2..64
 Organizational Information..64
 Interview Questions..64

 Interview 3..65
 Organizational Information ...65
 Interview Questions ...65

 Interview 4..68
 Organizational Information ...68
 Interview Questions ...68

 Interview 5..70
 Organizational Information ...70
 Interview Questions ...71

 Interview 6..73
 Organizational Information..73
 Interview Questions..74

 Interview 7..75
 Organizational Information..75
 Interview Questions..76

 Interview 8..78
 Organizational Information..78
 Interview Questions..78

 Interview 9..83
 Organizational Information..83
 Interview Questions..83

 Interview 10..85
 Organizational Information..85
 Interview Questions..85

 Copyright QUALOSS Consortium

5

Measurement Requirements Specifications

Deliverable ID: D1.2

Page : 6 of 88

Version: 1.3
Date: Mar 15, 07

Status : Proposal
Confid : Restricted

1 INTRODUCTION

1.1 MOTIVATION

The strategic objective of the QuaLOSS project is to enhance the competitive position of the European
software industry by providing methodologies and tools for improving their productivity and the quality of their
software products. To achieve this objective, QuaLOSS notes that many organizations integrate Free libre
Open Source Software (FlOSS) in their systems hence QuaLOSS aims at facilitating the selection of the
most adequate FlOSS . In particular, QuaLOSS focuses on assessing the evolvability and robustness of
FlOSS.

This higher competitiveness is to be addressed by providing a reliable assessment method of open source
software in order to integrate them into industrial software. This will ease the integration of high quality level
open source components, and increase the productivity.

To achieve this goal, QualOSS proposes to build a high level methodology to benchmark the quality of open
source software in order to ease the strategic decision of integrating adequate F/OSS components into
software systems. Therefore, one of the main outcomes of the QuaLOSS project is to deliver an assessment
methodology for gauging the evolvability and robustness of open source software.

This first workpackage (WP1) performs requirements analysis through prototyping while the other scientific
workpackages (WP2-4) improve on the functional prototype build in WP1. The first three tasks of WP1 (T1.1,
T1.2 and T1.3) perform requirements analysis while the remaining three tasks (T1.4, T1.5, and T1.6) build
the functional prototype and validate the approach. The goal of this deliverable, D1.2, is to define the goals
and requirements for this assessment method, the QUALOSS quality model.

1.2 GOAL

The goal of task 1.2 in workpackage 1 is to determine the goals companies want to achieve when measuring
evolvability and robustness of software components with the objective to integrate these components in their
software systems and products. Part of these goals are business goals related to F/OSS usage. Another part
of these goals is the stakeholders' definition of robustness and evolvability; that is, what evaluation criteria
they use.

The key result of task 1.2 is a definition of robustness and evolvability based on related work and
stakeholders' views. These definitions will be represented in the form of quality characteristics relevant to
evolvability and robustness. Definition of concrete metrics for these quality characteristics is part of task 1,3.

1.3 STRATEGY FOR WORKPACKAGE 1

The main objective of WP1 is to perform requirement analysis through prototyping. Currently, there exists a
set of metrics and corresponding measuring tools.

The outcome of prototyping in WP1 serves in performing a thorough requirement analysis in order to well
formulate our requirements and eventually, it also helps identify promising metrics and tools to integrate in
our final QUALOSS platform. A first prototype schema for the QUALOSS repository also emanates from
WP1, in particular from task 1.4. If our prototype quality models constructed on basic metrics and the
calibration exercise yield interesting results directly usable and transferable to our QUALOSS platform then
that is extra benefit.

The tasks of workpackage 1 can be grouped as follows: (1) Definition of goals for the QualOSS method, (2)
definition of quality models that support these goals, and (3) evaluation and calibration of the quality models.

 Copyright QUALOSS Consortium

6

Measurement Requirements Specifications

Deliverable ID: D1.2

Page : 7 of 88

Version: 1.3
Date: Mar 15, 07

Status : Proposal
Confid : Restricted

(1) Definition of goals to be supported by the QualOSS method is addressed in task 1.2. Thereby, the
approach is to first define and elicit usage scenarios for OSS components, and to define evolvability/
robustness based on these scenarios and on related work in quality modelling and assessment of OSS
projects.

(2) Definition of QualOSS quality models is addressed in task 1.3. The definition will be done top-down as
well as bottom-up. The top-down part is addressed by selecting and defining models suitable to meet the
previously defined goals, based on a survey on available models. This includes existing assessment
methods for F/OSS projects, relevant quality models (such as ISO 9126), and on insights from related
projects on F/OSS evaluation, such as FlOSSmetrics. In addition, the definition will also take into account
available data and tools, as elicited in task 1.1. Figure 1 shows the inputs for task 1.3. In particular, this
implies that, compared to the description of work, the definition of metrics for the QualOSS model will
completely be shifted to task 1.3.

Figure 1: Input Sources for QualOSS model (D 1.3)

(3) Evaluation and calibration of the quality models are addressed in tasks 1.4 to 1.6. Thereby, task 1.4
implements a prototype and repository for data extraction, and uses this prototype to process a set of
reference projects. Workpackage 2 will build an advanced set of tools based on the experience gathered in
task 1.4. Calibration of the quality models is addressed in task 1.5. More precisely, task 1.5 examines the
usefulness and applicability of the quality models and tries to find patterns and dependencies in the data that
can be used as input to improve the quality models. Task 1.6 validates the quality models on additional
projects. This includes, for example, evaluating the definition and prioritization of quality characteristics from
stakeholders' viewpoints. Workpackages 4 and 5 pick up on the results of tasks 1,5 and 1.6 by creating
advanced quality models and extensively evaluating them.

It is important to note that work in task 1.2 and 1.3 made it clear that we need to restrict D1.2 to definition of
robustness and evolvability characteristics. In terms of the goal-question-metric (GQM) paradigm's
terminology, these are the measurement goals and questions. The GQM metrics; that is, the definition of
appropriate metrics and identification of measurement tools, is part of D1.3. In addition, as product and
community aspects need to be considered, and as process maturity is intrinsic to assessing a community,
we decided that part of task 1.3 will be to develop an assessment method. The vision of the QualOSS quality
model is that all stakeholders use the same definition and metrics to measure robustness and evolvability.
What may change depending of the stakeholder's situation, however, is the priority of the quality
characteristics. For example, stability of a product is measured in the same way for all products; however, if it

 Copyright QUALOSS Consortium

7

QualOSSQualOSSQualOSSQualOSS
ModelModelModelModel

Partners‘
Models

(CETIC, URJC, IESE, …)

Usage Scenarios

RequirementsGoals

QM StoA

Other Projects
•FLOSSMETRICS
•QUALIPSO
•SQO-OSS
•FLOSSWORLD

(FLOSS) Assessment methods
(OpenBRR,QSOS, OSMM, …)

Data / Tool availability

Measurement Requirements Specifications

Deliverable ID: D1.2

Page : 8 of 88

Version: 1.3
Date: Mar 15, 07

Status : Proposal
Confid : Restricted

is to be used as desktop tool or as part of an external service the company offers, the stability is of different
importance to the stakeholder. For this reason, we decided to elicit usage scenarios for F/OSS components.
These usage scenarios will later be used to define an initial weighting of the different quality characteristics.
The definition of quality characteristics will be independent of the scenario. The challenges that need to be
addressed in the QualOSS quality model are missing or inconsistent data; for example. Figure 2 illustrates
the dependency between D 1.2 and D 1.3.

Figure 2: Relation between Deliverables 1.2 and 1.3: D 1.2 defines the quality characteristics that are relevant for
evolvability and robustness, while D 1.3 contributes the definition of metrics and an initial proposal of weighting schemes
to reflect different priorities between quality characteristics

1.4 APPROACH

This section describes the approach we took to achieve the goals of Deliverable 1.2.

The goals of D1.2 can be summarized as follows: Determine the goals companies want to achieve when
measuring evolvability and robustness of software components with the objective to integrate these
components in their software systems and products.

The approach taken in task 1.2 is to first define and elicit usage scenarios for OSS components from
stakeholders through structured interviews. As a next step, we define evolvability and robustness based on
these scenarios as well as on related work in quality modelling and assessment methods for F/OSS projects.
The result of this work is a definition of QualOSS quality indicators for evolvability and robustness in terms of
quality characteristics and sub-characteristics that correspond to GQM measurement goals and GQM
questions.

Finally, task 1.2 defines an initial validation plan that will be further refined in tasks 1.4-1.6. Workpackages 4
and 5 will build upon and further refine the validation plan proposed here.

1.5 STRUCTURE OF THE DELIVERABLE

The rest of the deliverable is structured as follows:

 Copyright QUALOSS Consortium

8

Robustness Evolvability

Stability /
Reliability

Analyzability
Readability

Testability

Safety /
Security

Standard
Adherence

Maintainability
Changeability

Community

Maturity

D 1.2 D 1.3

Quality
Attributes

Metrics
Metric Metric Metric... ...

Static weights

Dynamic weights
Dependent on purpose

Measurement Requirements Specifications

Deliverable ID: D1.2

Page : 9 of 88

Version: 1.3
Date: Mar 15, 07

Status : Proposal
Confid : Restricted

Section 2 defines the terminology used in the remainder of the report. Section 3 presents related work on
quality models relevant for defining robustness and evolvability of F/OSS project. It is divided into two parts:
One part is focused on assessment methods for F/OSS projects (QSOS; OSMM, and OpenBRR), while the
second part describes the state of the art and practice in quality modelling (McCall and Boehm, DGQ,
FURPS, NASA SATC, and ISO 9126). Section 4 describes robustness and evolvability from stakeholders'
viewpoints. In particular, it presents the results of a series of interviews conducted as part of task 1.2. These
interviews were aimed at deriving usage scenarios for F/OSS components (i.e., how stakeholders intended
to use F/OSS products), and at evaluation criteria used by stakeholders (i.e., at how stakeholders evaluate
whether F/OSS products are suitable). Section 5 presents the consolidated requirements for the QualOSS
model; including the resulting QualOSS definition of robustness and evolvability that will be used as basis for
D 1.3. Section 6 contains the initial validation plan, while Section 7 summarizes and concludes this report.
The Appendix contains the questionnaire used to conduct the interviews, as well as the interview results.

Keywords: Free / Open Source Software, quality modelling, process assessment, project assessment,
product assessment, evolvability, robustness

2 TERMINOLOGY

This chapter introduces a consistent set of terms related to quality modelling. The purpose of this
introduction is twofold. First, it defines a framework that structures the contents of the subsequent chapters
of this report, and, second, it aims at consolidating the terminology presented in the literature, which is often
used inconsistently across different sources.

Section 2.1 gives an overview of the GQM approach. In Section 2.2 and 2.3, quality terms are defined. In
Section 2.4 a framework for quality models is presented. In Section 2.5 measurement related terms are
defined.

2.1 GQM

The Goal Question Metric (GQM) paradigm (Basili et al., 1994; Basili and Rombach, 1988; Basili and Weiss,
1984) has been proposed as a goal-oriented approach for measuring product and process qualities in
software engineering. It is a top-down mechanism for defining a set of goals and for evaluating them using
measurement. GQM represents a systematic approach for adapting and integrating goals with models of the
software processes, products and quality perspectives of interest, based upon the specific needs of the
project and the organization.

The GQM paradigm was first developed at the University of Maryland in 1984 (Basili and Weiss, 1984) in
cooperation with the NASA Goddard Space Flight Center (Basili et al., 2002) and has been extended as part
of the TAME project (Basili and Rombach, 1988). It is intended as the goal setting step in an evolutionary
quality improvement paradigm tailored for a software development organization, the Quality Improvement
Paradigm (QIP) (Basili et al., 1994).

A first formal description of how to apply GQM was defined by Basili in 1992 (Basili, 1992) and was later
refined (van Solingen, 1999, Gresse et al., 1995). A GQM quality model has a hierarchical structure. It
consists of three components: goal, question, and metric (see Figure 3). Each of those corresponds to a
different level (conceptual, operational, and quantitative).

Conceptual level (Goal): A goal is defined for an object, for a variety of purposes, with respect to various
models of quality, from various points of view, relative to a particular context. The GQM-Goal-Template is
presented in Table 1.

 Copyright QUALOSS Consortium

9

Measurement Requirements Specifications

Deliverable ID: D1.2

Page : 10 of 88

Version: 1.3
Date: Mar 15, 07

Status : Proposal
Confid : Restricted

GQM- Goal-Template

Object Products, Processes, Resources
Purpose Characterization, Improvement, Prediction, …
Quality focus Reliability, Costs, Usability, Maintainability, …
Point of view Project manager, Developer, User, Upper management
Context Project X of company A

Table 1: GQM Goal Template

Operational level (Questions): A set of questions is formulated to break down the goal. Various aspects of
the quality focus are characterized and factors that might influence the quality (i.e., influencing factors) are
identified. The questions support the evaluation and interpretation of the measurement data regarding the
goal.

Quantitative level (Metric): A set of data is associated with every question in order to answer it in a
quantitative way.

Figure 3: GQM Quality Model. The yellow color represents goals (conceptual level), green represents questions
(opreational level), and red represents metrics (quantitative level).

In order to systematically apply the GQM-Quality Model in an organizational and project setting, a GQM-
Process was defined (Basili, 1992, Gresse et al., 1995). According to (Gresse et al., 1995), the GQM-
Process is decomposed to the following steps:

Perform Prestudy: The objective of this step is the collection of information which is relevant in the context
of quality modelling for the organization and its projects. For example, the organizational and project goals
must be identified, (e.g., what goal is more important for the organization: keeping the delivery date or
meeting quality demands).

Identify GQM-Goal: Based on the organizational and project goals different goals are formulated according
to the GQM-Goal Templates and ranked in a priority list. In the pilot phase of quality modelling only one
maximally two should be selected.

Produce GQM quality model: The implicit knowledge with respect to the goal is elicited by interviewing the
people stated as point of view in the goal template. The information resulting from all interviews is merged.
This merged information is used to refine the GQM quality model. Existing conflicts have to be clarified.

 Copyright QUALOSS Consortium

10

Has implicit
knowledge about

models and factorsGoal 1
Object O
Purpose P1
Quality A
Point of View
Context C

Goal 1
Object O
Purpose P1
Quality A
Point of View
Context C

Goal 2
Object O
Purpose P2
Quality B
Point of View
Context C

Goal 2
Object O
Purpose P2
Quality B
Point of View
Context C

Question 1
Quality Model A

Question 1
Quality Model A

Question 2
Influencing Factors

Question 2
Influencing Factors

Question 3
Influencing Factors

Question 3
Influencing Factors

Question 4
Quality Model B

Question 4
Quality Model B

Question 5
Quality Model B

Question 5
Quality Model B

Metric 1Metric 1

Metric 2Metric 2 Metric 4Metric 4

Metric 5Metric 5 Metric 7Metric 7 Metric 8Metric 8Metric 3Metric 3 Metric 6Metric 6

D
e
fi
n
it
io

n

E
v
a
lu

a
tio

n
/In

te
rp

re
ta

tio
n

Has implicit
knowledge about

models and factorsGoal 1
Object O
Purpose P1
Quality A
Point of View
Context C

Goal 1
Object O
Purpose P1
Quality A
Point of View
Context C

Goal 2
Object O
Purpose P2
Quality B
Point of View
Context C

Goal 2
Object O
Purpose P2
Quality B
Point of View
Context C

Question 1
Quality Model A

Question 1
Quality Model A

Question 2
Influencing Factors

Question 2
Influencing Factors

Question 3
Influencing Factors

Question 3
Influencing Factors

Question 4
Quality Model B

Question 4
Quality Model B

Question 5
Quality Model B

Question 5
Quality Model B

Metric 1Metric 1

Metric 2Metric 2 Metric 4Metric 4

Metric 5Metric 5 Metric 7Metric 7 Metric 8Metric 8Metric 3Metric 3 Metric 6Metric 6

D
e
fi
n
it
io

n

E
v
a
lu

a
tio

n
/In

te
rp

re
ta

tio
n

Measurement Requirements Specifications

Deliverable ID: D1.2

Page : 11 of 88

Version: 1.3
Date: Mar 15, 07

Status : Proposal
Confid : Restricted

Inconsistencies and missing items are resolved by interviewing people again. Abstraction sheets are a
means for collecting and storing the information (see Gresse et al., 1995).

Produce Measurement Plan: A measurement plan states a concise specification of the data collection
process that encompasses who collects at what point in time which kind of data with which aids. The main
issue that is to be addressed is the appropriate integration of measurement into the processes performed in
the software project.

Collect and Validate Data: The measurement data are collected according to the defined procedures in the
measurement plan. The collected data is validated and stored, best in electronic form.

Analyze Data: The analysis and interpretation of the collected data is conducted during feedback sessions
(i.e., a meeting of the people representing the point of view in the goal template and the data providers). The
data, raw or graphically processes, is studied in advance by the participants of the feedback sessions.
During the feedback sessions the presented material is analyzed and interpreted by the people in the point of
view of the goal template. The results are conclusions with respect to the goal under investigation.

Package: The results and experiences gained with respect to the goal under investigation are fixed to make
them available in upcoming projects. The context is stated in which the results and experiences are valid
and/or can be applied.

In the application of the GQM approach, the permanent interaction between project team and the
measurement responsible is crucial as well as the placement of measurement rationales and results at other
or upcoming project’s disposal. To support the communication between project and measurement staff, a
representation called abstraction sheet was developed. As side effect and to avoid a costly build up of a
measurement database, the abstraction sheet can be used as storage medium to ensure a long-lasting
benefit across projects. An abstraction sheet summarizes the main issues and dependencies of a GQM
quality model and presents this information on four quadrants of a sheet (see Figure 4):

Aspects of Quality focus and Metrics: What does the quality focus specified in the GQM goal template
mean to the project representatives? What are metrics to analyze the quality focus?

Baseline hypothesis: What is the estimate on the outcome of the quality aspect?

Variation factor What are influencing factors that have an impact on the quality focus?

Impact on baseline hypothesis What is the (assumed) impact of an influencing factor on the quality focus?

 Copyright QUALOSS Consortium

11

Measurement Requirements Specifications

Deliverable ID: D1.2

Page : 12 of 88

Version: 1.3
Date: Mar 15, 07

Status : Proposal
Confid : Restricted

Figure 4: Abstraction Sheet

2.2 SOFTWARE QUALITY

According to the ISO/IEC standard 8402 (ISO 8402), quality is defined in general as “the totality of
characteristics of an entity that bear on its ability to satisfy stated and implied needs”. Since this report is
concerned with the quality of software products, it is also appropriate to introduce a specific definition for
software quality. According to the ISO/IEC standard 9126 (ISO 9126), software quality is “the totality of
characteristics of a software product that bear on its ability to satisfy stated and implied needs.” In the
remainder of this report we will restrict ourselves to software quality.

A quality model has to take into account the distinction between internal and external quality. External
quality is defined by the ISO/IEC standard 14598 (ISO 14598) as “the extent to which a product satisfies
stated and implied needs when used under specified conditions”, that is, external quality represents the
user's view on the system. It follows from the definition, that external quality can only be determined when
the product already exists. On the other hand, the possibility of determining quality during the earlier phases
of a product's development is also very desirable from a developer’s point of view. This is because it is
valuable for the developer to (1) get an early impression of software quality (before the system is delivered to
the customer) and (2) determine and evaluate how development practices impact product quality. Therefore,
ISO 14598 defines internal quality as “the totality of characteristics of a product that determine its ability to
satisfy stated and implied needs when used under specified conditions”. Internal quality is important to get an
early impression of quality and to make inferences on external quality.

In addition to internal and external quality, which refer to properties of a product itself, there is also the notion
of quality-in-use, which corresponds to the users’ view of the software when it is operating in the usage
environment. Thus, quality-in-use is based on the actual usage of the software, rather than on intrinsic
properties of the software itself. ISO 9126 defines quality in use as “the capability of the software product to
enable specified users to achieve specified goals with effectiveness, productivity, safety, and satisfaction in
specified contexts of use”. In the remainder of this report quality in use will not be discussed in detail.

 Copyright QUALOSS Consortium

12

Impact of influencing factors on baseline

hypothesis

1. The higher the degree of reuse,

2. The longer the experience of the developement
team members, the lower the number of failures
and faults.

3. The closer the adherence to the code inspection
process, the lower the number of failures and faults
in testing and integration

Baseline hypothesis:

1. Number of failure

- total number: 115

- estimates John: 30% critical, 70% uncritical

- estimates Elsa: 15% critical, 60% uncritical,
15% others

2. Number of faulty modules

- total number: 200 Modules
- AlphaH (40 faults), AlphaD (25), AlphaF (10),

AlphaX (9), ….

- 10 in requirements phase, 30 in design, 50
implementation, 110 testing/integration

Influencing factors:
1. Degree of Reuse

2. Experience of Development Team Members

3. Adherence to Code Inspection Process

Aspects of quality and metrics:

1. Number of failure

- total number

- severity (sorted by criticality)

2. Number of faulty modules

- total number

- sorted by modules

- sorted by lifecycle phases of detection

Context

Company X
Project delta

Point of view

SW development
team

Quality focus

Reliability

Purpose

Understanding

Object

SW-Product
alpha

Goal

Impact of influencing factors on baseline

hypothesis

1. The higher the degree of reuse,

2. The longer the experience of the developement
team members, the lower the number of failures
and faults.

3. The closer the adherence to the code inspection
process, the lower the number of failures and faults
in testing and integration

Baseline hypothesis:

1. Number of failure

- total number: 115

- estimates John: 30% critical, 70% uncritical

- estimates Elsa: 15% critical, 60% uncritical,
15% others

2. Number of faulty modules

- total number: 200 Modules
- AlphaH (40 faults), AlphaD (25), AlphaF (10),

AlphaX (9), ….

- 10 in requirements phase, 30 in design, 50
implementation, 110 testing/integration

Influencing factors:
1. Degree of Reuse

2. Experience of Development Team Members

3. Adherence to Code Inspection Process

Aspects of quality and metrics:

1. Number of failure

- total number

- severity (sorted by criticality)

2. Number of faulty modules

- total number

- sorted by modules

- sorted by lifecycle phases of detection

Context

Company X
Project delta

Point of view

SW development
team

Quality focus

Reliability

Purpose

Understanding

Object

SW-Product
alpha

Goal

Measurement Requirements Specifications

Deliverable ID: D1.2

Page : 13 of 88

Version: 1.3
Date: Mar 15, 07

Status : Proposal
Confid : Restricted

The relationship between software internal and external quality is illustrated by Figure 5. The figure stresses
the fact that internal quality is an important indicator for external quality.

Figure 5: Internal and External Quality

The definitions taken from ISO 9126 and ISO 8402 are very general. For practical use a more detailed
definition of quality is necessary. This is due to two main reasons:

• Quality has many facets and comprises many characteristics. It is necessary to define which of those

characteristics contribute to software quality.
• In order to specify quality requirements or to assess a system's quality, it is necessary to define levels of

quality and to verify their fulfilment. This calls for an operational, measurable definition of quality
characteristics.

This leads us to the concept of a software quality model, whose main purpose is to operationalize the
general definition of quality.

2.3 SOFTWARE QUALITY MODELS

According to ISO14598, the term quality model is defined as “the set of characteristics and relationships
between them, which provides the basis for specifying quality requirements and evaluating quality”. Due to
the generality of this definition, a variety of concepts can be potentially identified as quality models, a fact
that often results in misunderstandings. This section's objective is to provide a comprehensive, yet clear
definition of the various aspects of a quality model.

 Copyright QUALOSS Consortium

13

External
Quality

Relationship

Internal
Quality

Quality

User-perspective
in final product

Developer perspective
during development

External
Quality

Relationship

Internal
Quality

Quality

User-perspective
in final product

Developer perspective
during development

Measurement Requirements Specifications

Deliverable ID: D1.2

Page : 14 of 88

Version: 1.3
Date: Mar 15, 07

Status : Proposal
Confid : Restricted

Figure 6: Software Quality Model Framework

Figure 6 depicts the components of a comprehensive quality model. The set of characteristics that constitute
quality is captured by means of product quality models. Product quality models determine how the term
quality is decomposed into quality characteristics. In order to be operational, these quality characteristics
need to be measurable. Product quality models can be defined for internal and external quality.

Quality relationships can be seen as high-level functions q=f(x1,…,xn) that relate quality to its impacting
factors. Such impacting factors, denoted as xi in the figure above, can be measured earlier in the
development process (e.g., internal quality) or even be part of the development process itself. The quality
relationships can range from more qualitative relationships (e.g., knowing how a process impacts quality) to
quantitative relationships (e.g., statistical prediction models). Typically, empirical studies such as case
studies and experiments are necessary in order to identify and validate such relationships.

Several types of relationships are depicted in Figure 6.

Time models describe the expected behavior of a certain software measure (related to a quality
characteristic) as a function of time. For example, a table listing the proportion or number of defects in each
development phase can constitute a defect detection (time) model.
Functional relationships (also referred to as statistical prediction models) describe the relationship
between various software qualities by means of an equation. These relationships provide a method for
predicting the values of software qualities based on information that is more readily available or known. An
example of a functional relationship is a fault-proneness model fp=f(coupling, cohesion) that tries to predict
the number of defects in a component depending on certain levels of coupling and cohesion.
Product-process dependencies are validated dependencies that describe how practices in the
development process impact product quality. An example of such a product-process dependency can be

 Copyright QUALOSS Consortium

Determined in

final product

Determined during
development

External

Quality

Characteristic

External

Quality

External

Quality

Characteristic

Relationships
q=f(x1,…,xn)

Internal

Quality

Characteristic

Internal

Quality

Internal

Quality

Characteristic

Process

#d
ef

ec
ts

Inspection Test 1 Test 2

#d
ef

ec
ts

Inspection Test 1 Test 2

Statistical

Relationship
y=f(x)

Product-Process

Dependency
Inspections ->Reliability

Time Model

Determined in

final product

Determined during
development

External

Quality

Characteristic

External

Quality

External

Quality

Characteristic

Relationships
q=f(x1,…,xn)

Internal

Quality

Characteristic

Internal

Quality

Internal

Quality

Characteristic

ProcessProcess

#d
ef

ec
ts

Inspection Test 1 Test 2

#d
ef

ec
ts

Inspection Test 1 Test 2

Statistical

Relationship
y=f(x)

Product-Process

Dependency
Inspections ->Reliability

Time Model

14

Measurement Requirements Specifications

Deliverable ID: D1.2

Page : 15 of 88

Version: 1.3
Date: Mar 15, 07

Status : Proposal
Confid : Restricted

formulated as: “The development practice Software Inspections performed in the process Software
Requirements Analysis impacts the product quality Reliability”. It has to be noted that product-process
dependencies can only be determined from an actual process in a concrete environment. Using product-
process dependencies for prediction in a new project is only possible if it exhibits only little variation with
respect to the older project where the dependency was valid. Consequently, a standardized development
process is a prerequisite for this kind of quality relationships to be useful in practice.

2.4 STRUCTURE OF A QUALITY MODEL

Quality models consist basically of quality characteristics, which are refined into quality sub-characteristics,
and finally into measurable properties. Figure 7 Shows the structure of a quality model, as defined by the
SQUID project. The SQUID quality model, which was defined in the late 1990s in an ESPRIT research
project, has two components:

• A structure model that defines model elements and their interactions.

• A content model that identifies a set of entities linked in accordance with that structure.

The quality model refines the quality requirements defined for a certain product. This is done by defining
suitable quality characteristics which are decomposed into sub-characteristics until they are directly
measurable (also called quality attributes or properties). Quality (sub-)-characteristics and attributes can be
internal and external. Thereby, internal quality is defined as “the totality of characteristics of the software
product from an internal view”. In contrast to internal quality, external quality is defined as “the totality of
characteristics of the software product from an external view. It is the quality when the software is executed,
which is typically measured and evaluated while testing in a simulated environment with simulated data using
external metrics” (see Section 3.2.5 on ISO 9126). The user identifies how internal characteristics/attributes
influence external ones by linking them in the model.

Figure 7: SQUID structure model of a quality model

The heart of SQUID is a general data model which defines what kind of information regarding the product
and its quality should be identified and measured. Therefore, the data model consists of a context model and
a quality model (see Figure 8). This division is proposed because different products or even different parts of
the same product usually have different behavioural requirements and thus different quality requirements.
The instantiation of this data model for a specific project is then called product quality model.

 Copyright QUALOSS Consortium

15

Quality-
Characteristic

Quality-
Sub-Characteristic

decomposes_to

Internal Quality
Characteristic influences

influences

Measurable Property

maps_to maps_to maps_to

Product Behavioral
Requirement

Quality Requirement
Specification

leads_to

references

Target
Value

Actual
Value

assesses

has measures

Quality-
Characteristic

Quality-
Sub-Characteristic

decomposes_to

Internal Quality
Characteristic influences

influences

Measurable Property

maps_to maps_to maps_to

Product Behavioral
Requirement

Quality Requirement
Specification

leads_to

references

Target
Value

Actual
Value

assesses

has measures

Measurement Requirements Specifications

Deliverable ID: D1.2

Page : 16 of 88

Version: 1.3
Date: Mar 15, 07

Status : Proposal
Confid : Restricted

The context model includes the deliverables (such as specifications and code) that are produced during the
life of the project, the activities producing the deliverables, and the review points that are control interval.
Quality measurement takes place of the deliverables at the specified review points. Furthermore, the quality
requirement for the particular product is stated together with the target, actual, and estimated value. Target
and estimated value might be provided by the experience base from similar products.

Figure 8: SQUID context model

An important, yet non trivial aspect of a quality model is the relationship between internal and external
quality. External quality, as seen by the customer, is what the system has to achieve. Internal quality,
however, is what is visible during development. Therefore, making inferences between internal and external
quality (attributes) is the key to evaluating quality early in the development process and controlling it
appropriately.

In addition to linking internal to external quality, it is also useful to link internal quality determined early in the
development process (e.g., design) to internal quality determined later in the development process (e.g.,
code or testing). While such a link does not allow to make inferences on the final product, it does make it
possible to make inferences about quality that will be present at later stages of the development process.

The last type of relationship links a development process with its resulting product's quality. Understanding
this kind of relationship enables a project manager to select processes that achieve the level of quality
intended for each particular project. Relationships of this type are established by using empirical studies to
determine the impact of individual development practices on product quality.

 Copyright QUALOSS Consortium

16

Product portionProduct portion

Project object
- Activities
- Review points
- Deliverables

Project object
- Activities
- Review points
- Deliverables

Quality requirementQuality requirement

Value
- Target
- Actual
- Estimates

Value
- Target
- Actual
- Estimates

Experience base
- Similar projects

Experience base
- Similar projects

Quality
characteristic

Quality
characteristic

Internal quality
characteristic

Internal quality
characteristic

External quality
characteristic

External quality
characteristic

Internal quality
Sub-characteristic

Internal quality
Sub-characteristic

External quality
Sub-characteristic

External quality
Sub-characteristic

External
measurable

quality attribute

External
measurable

quality attribute

Internal
measurable

quality attribute

Internal
measurable

quality attribute

Comprises Quantified by

Provides

Evaluated
by

Refined in

Decomposed to

Linked

Decomposed to

Mapped to

Linked

Linked

SQUID data model

Quality
model

Context
model

Defines

Product portionProduct portion

Project object
- Activities
- Review points
- Deliverables

Project object
- Activities
- Review points
- Deliverables

Quality requirementQuality requirement

Value
- Target
- Actual
- Estimates

Value
- Target
- Actual
- Estimates

Experience base
- Similar projects

Experience base
- Similar projects

Quality
characteristic

Quality
characteristic

Internal quality
characteristic

Internal quality
characteristic

External quality
characteristic

External quality
characteristic

Internal quality
Sub-characteristic

Internal quality
Sub-characteristic

External quality
Sub-characteristic

External quality
Sub-characteristic

External
measurable

quality attribute

External
measurable

quality attribute

Internal
measurable

quality attribute

Internal
measurable

quality attribute

Comprises Quantified by

Provides

Evaluated
by

Refined in

Decomposed to

Linked

Decomposed to

Mapped to

Linked

Linked

SQUID data model

Quality
model

Context
model

Defines

Measurement Requirements Specifications

Deliverable ID: D1.2

Page : 17 of 88

Version: 1.3
Date: Mar 15, 07

Status : Proposal
Confid : Restricted

An additional important aspect regarding quality relationships is the context and environment in which each
relationship was identified, since a relationship can stop being valid as soon as its original context is altered.
A transfer of relationships to new environments must be performed carefully, by validating the transferred
relationships in the new context. One way to understand this problem is by observing that context and
environment also characterize a set of variables that affect quality and the interactions among its impacting
factors. Changing the context and environment might also change these factors and thus the resulting level
of quality.

2.5 MEASUREMENT

As pointed out in Section 2.3, the main objective of a quality model is to operationalize the term quality, by
making it eventually measurable. For this reason, refinement of quality characteristics inside a quality model
stops at the level of quality attributes, which are measurable properties of products, processes, or resources.
In order to measure the property or attribute of an entity (i.e., process, product or resource) via
measurement, numbers or symbols are assigned to its attribute (Fenton and Pfleeger, 1996; Agresti et al.,
2002). This assignment has to follow clearly specified rules so that different people assign the same
measurement values to the attribute.

A measure is “the number or symbol assigned to a quality attribute of an entity by making a measurement”
(ISO 9126). There are direct measures that are determined by directly analysing the entity under study.
Indirect measures, on the other hand, are derived from the measures of one or more other attributes.1

Each measure also needs to specify a tolerance range; that is, criteria for acceptable (“good”) values of the
measure.

A descriptive quality model is an operational rule that determines how to measure an entity's attribute.
Formally, a descriptive quality model can be defined as a function f that computes a measure µ=f(x1,…xn),
from the values of the measures xi. (Briand et al., 1997). For example, µ could be a model for defect density,
which is defined as the number of defects found over product size. Here, x i are the number of defects and
size.

3 QUALITY MODELS STATE OF THE ART

This section presents the definitions of robustness and evolvability from the state of the art.

3.1 DEFINITION OF EVOLVABILITY AND ROBUSTNESS FROM F/OSS ASSESSMENT METHODOLOGIES

Several Methodologies to help select appropriate F/OSS components or products have surfaced in the past
couple of years. The most known are QSOS, Open Source Maturity model (OSMM) by Gap Gemini, and
OpenBRR. These methodologies have all create a evaluation template for scoring open source projects on
different criteria. In this part of our work, we are only interested in inventorying the quality characteristics
used by evaluated by these models but not the actual scoring system provided by these models. The work
that specifies how to measure quality characteristics is left for later.

3.1.1 QSOS

QSOS (QSOS, 2006) split its evaluation template in two kinds of sections: one generic section and several
sections specific to a particular family of applications such as groupware, cms, database, etc. The specific
section is related to the functionality offered. QUALOSS is not concerned with the functionality quality
characteristic in turn, we are only interested in the generic section of the evaluation template. Figure 9 shows
the QSOS structure.

1 In this sense, a descriptive quality model is an indirect measure that measures a quality attribute

 Copyright QUALOSS Consortium

17

Measurement Requirements Specifications

Deliverable ID: D1.2

Page : 18 of 88

Version: 1.3
Date: Mar 15, 07

Status : Proposal
Confid : Restricted

Below is the template of characteristics found in QSOS's generic template. We note that this template comes
from the paper version (.pdf) and not the web version of the template, which is slightly different. In particular,
the web version lists the item “Independence of development” in the “Industrialized Solution” category
whereas the paper version includes it in the “Intrinsic Durability” category. Second, the web version elevated
“Exploitability” as a top-level category where as the paper version includes it as a sub-category of the
“Industrialized Solution” category. Finally, the paper version has a section on risk related to “Service
Providing” that does not exist in the web version.

In some case, the terminology used by QSOS is not detailed enough, in such cases, we provide additional
information in parenthesis, for example, Intrinsic Durability .. Adoption .. References is not precise enough as
its is unclear to the reader what characteristic of reference are under consideration. In turn, we peeked in the
scoring system to identify what characteristic(s) of References is(are) used in the scoring. In this case, it is
the mission criticality of the system running the F/OSS product that is assessed. So, we add that information
in parentheses.

 Copyright QUALOSS Consortium

18

Measurement Requirements Specifications

Deliverable ID: D1.2

Page : 19 of 88

Version: 1.3
Date: Mar 15, 07

Status : Proposal
Confid : Restricted

 Copyright QUALOSS Consortium

19

Measurement Requirements Specifications

Deliverable ID: D1.2

Page : 20 of 88

Version: 1.3
Date: Mar 15, 07

Status : Proposal
Confid : Restricted

3.1.2 Open Source Maturity Model (Cap Gemini)

Below is the hierarchy proposed by OSMM, as defined by Cap Gemini (Duijnhouwer and Widdows, 2003):

• Product

• Age

• Licensing

• Human hierarchies

• Selling Points

• Developer community

• Integration

• Modularity

• Collaboration with other products

• Standards

• Use

• Support

• Ease of Deployment

• Acceptance

• User community
• Market penetration

The hierarchy is much lighter and it is also very imprecise in its wording. For example, “Integration ..
Standards” does not specify what characteristics related to standards are under consideration. To find that
information, we peek in the scoring system. This reveals that the true characteristic being evaluated is the
recency of the standards followed. We repeat this procedure to the other imprecise items of the OSMM
hierarchy. The reworded hierarchy, presented in Figure 10 will make our comparison with QSOS and
OpenBRR much more accurate.

 Copyright QUALOSS Consortium

20

Measurement Requirements Specifications

Deliverable ID: D1.2

Page : 21 of 88

Version: 1.3
Date: Mar 15, 07

Status : Proposal
Confid : Restricted

3.1.3 Open Business Readiness Rating (OpenBRR)

The OpenBRR (OpenBRR; 2006) builds on two existing maturity models, Navica’s Open Source Maturity
Model (Golden, 2004) and Cap Gemini’s equivalent (Duijnhouwer and Widdows, 2003). The OpenBRR
hierarchy of quality characteristics looks as follows:

• Usability

• End user UI experience

• Time for setup pre-requisites for installing open source software

• Time for vanilla installation/configuration

• Quality

• Number of minor releases in past 12 months

• Number of point/patch releases in past 12 months

• Number of open bugs for the last 6 months

• Number of bugs fixed in last 6 months (compared to # of bugs opened)

• Number of P1/critical bugs opened

• Average bug age for P1 in last 6 months

• Security

• Number of security vulnerabilities in the last 6 months that are moderately to extremely critical

• Number of security vulnerabilities still open (unpatched)

• Is there a dedicated information (web page, wiki, etc) for security?

• Performance

• Performance Testing and Benchmark Reports available

• Performance Tuning & Configuration

• Scalability

• Reference deployment

• Designed for scalability

• Architecture

• Is there any 3rd party Plug-ins

• Public API / External Service

• Enable/disable features through configuration

• Support

• Average volume of general mailing list in the last 6 months

• Quality of professional support

• Documentation

• Existence of various documentations.

• User contribution framework

• Adoption

• How many books does amazon.com gives for Power Search query: “subject:computer and

title:component name”
• Reference deployment

• Community

• Average volume of general mailing list in the last 6 months

• Number of unique code contributor in the last 6 months

• Professionalism

• Project Driver

• Difficulty to enter the core developer team

Unlike the other two previous hierarchies, elements of OpenBRR hierarchy are very specific, for example,
under the Quality category, we find “number of minor releases in the past 12 months”. This is not a quality
characteristic but as OpenBRR calls it: a metric. So the current OpenBRR hierarchy is not in a suitable form
to compare it with the other two models. However, the metrics used by OpenBRR can be abstracted into

 Copyright QUALOSS Consortium

21

Measurement Requirements Specifications

Deliverable ID: D1.2

Page : 22 of 88

Version: 1.3
Date: Mar 15, 07

Status : Proposal
Confid : Restricted

quality characteristics. For example, under Usability, the two metrics “Time for setup pre-requisites for
installing open source software” and “Time for vanilla installation / configuration” can be abstracted to “Ease
of Vanilla Deployment”. We repeat the same analysis for the different set of metrics found under every
OpenBRR category. However, we moved information of two categories, in particular, characteristic
extrapolated from Scalability migrated under Architecture and characteristic of documentation were moved
under the Support category. The results of our abstraction are presented below in Figure 11.

 Copyright QUALOSS Consortium

22

Measurement Requirements Specifications

Deliverable ID: D1.2

Page : 23 of 88

Version: 1.3
Date: Mar 15, 07

Status : Proposal
Confid : Restricted

 Copyright QUALOSS Consortium

23

Measurement Requirements Specifications

Deliverable ID: D1.2

Page : 24 of 88

Version: 1.3
Date: Mar 15, 07

Status : Proposal
Confid : Restricted

3.1.4 Comparing QSOS, OSMM and OpenBRR

This section compare the hierarchy of QSOS, OSMM and OpenBRR with the indent to later combine their
quality characteristics in a single more comprehensive hierarchy of quality characteristics. In other words, our
comparison is not to intended to find out which of the three model is better but rather to extract quality
characteristics that are different between the three models. We will later classify these characteristics into a
more comprehensive hierarchy.

We emphasize that the comparison is performed on our reworked versions of OSMM and OpenBRR, only
QSOS was left changed.

Given that QSOS is the most comprehensive of the three models, we use it as the starting reference for our
comparison. In particular, we perform a pairwise comparison between each QSOS leaf characteristic with
each leaf characteristic of OpenBRR and OSMM. After, we enumerate the quality characteristics of OSMM
and OpenBRR not covered by QSOS.

The possible results of a pairwise comparison between two characteristics A and B are:

• The two characteristic are equivalent (A = B)

• One characteristics includes the other (A < B (A is included in B) or A > B (A includes B)),

• The two characteristics have some similarity relationship of a fuzzy nature (A ~ B)

• The two relationship have nothing in common (not listed in the table)

In the comparison table below, the left column enumerate all QSOS characteristics and then, for every leaf
characteristic of QSOS, we indicate whether OpenBRR and OSMM have corresponding characteristic with
one of the relationship signs identified above (=, < , >, or ~). This is shown by the relationship sign preceding
the characteristics in the OpenBRR and OSMM columns.

 Copyright QUALOSS Consortium

24

Measurement Requirements Specifications

Deliverable ID: D1.2

Page : 25 of 88

Version: 1.3
Date: Mar 15, 07

Status : Proposal
Confid : Restricted

QSOS OSMM OpenBRR

 I
n
tr

in
s
ic

 D
u

ra
b
ili

ty

M
a

tu
ri

ty Age = Product .. Age NONE

Stability NONE NONE

History, known problems (=
Management Ability)

NONE NONE

Fork probability, source of
forking

NONE NONE

A
d

o
p

ti
o
n Popularity = Acceptance .. Current Market

Penetration
~ Adoption .. Diversity of
Deployments (related to diversity of
user community)

References (= mission
criticality of references)

NONE NONE

Contributing community (=
volume and diversity of
community contribution)

> Acceptance .. Diversity of user
community mailing lists

> Community .. Activity on mailing
lists

> Community .. Size of Team
Contributing Code (in past 6 months)

Books (number of books
published about products)

NONE = Adoption .. Book Availability

D
e
v
e
lo

p
m

e
n

t
le

a
d

e
rs

h
ip Leading Team (= Size of

leading team)
NONE NONE

Management style (= level
of democracy of
management)

= Product .. Leadership style NONE

A
c
tiv

ity Developers identification,
turnover

= Product .. Integrability of developer
community

~ Community Professionalism ..
Integrability / permeability of core
developer team

Activity on bugs NONE = Quality .. Reactivity of developer
community to product problems ..
Reactivity on critical bugs
and Reactivity on all bugs

Activity on functionalities NONE NONE

Activity on releases NONE = Quality .. Release Activity (in past
12 months)

Independence of development ~ Product .. Leading Style ~ Community Professionalism ..
Independence of Management
Community

 Copyright QUALOSS Consortium

25

Measurement Requirements Specifications

Deliverable ID: D1.2

Page : 26 of 88

Version: 1.3
Date: Mar 15, 07

Status : Proposal
Confid : Restricted

QSOS OSMM OpenBRR

In
d

u
s
tr

ia
liz

e
d

 S
o

lu
tio

n

S
e

rv
ic

e
s Training (Diversity in

geographical, cultural and
gradual aspects)

NONE NONE

Support (Level of
commitment assigned to
support)

NONE ~ Support .. Professionalism of
support

Consulting (Diversity in
geographical and cultural
aspects)

NONE NONE

Documentation (Availability and
recentness of documentation)

NONE ~ Documentation .. Documentation
diversity

Q
u
a

lit
y
 A

s
s
u

ra
n

ce Quality Assurance Process NONE NONE

PM and QA Tools NONE NONE

P
a

ck
a

g
in

g Sources NONE NONE

*nix packaging NONE NONE

E
x
p
lo

it
a

b
ili

ty Ease of use, ergonomics ~ Use .. Ease of deployment > Usability .. (ease of) Vanilla
Deployability

Administration/Monitoring
(Availability of functionality
for administration and
monitoring)

NONE NONE

T
e

c
h

n
ic

a
l
a

d
a

p
ta

b
ili

ty Modularity (Software modularity) = Integration .. Software Modularity < Architecture .. Scalability (of
design)

B
y
-P

ro
d

u
c
ts Code modification (Ease of

build-ability)
NONE NONE

Code extension
(Extensibility or plug-ability)

~ Integration .. External
communication protocol compliance

~ Architecture .. Extensibility

 Copyright QUALOSS Consortium

26

Measurement Requirements Specifications

Deliverable ID: D1.2

Page : 27 of 88

Version: 1.3
Date: Mar 15, 07

Status : Proposal
Confid : Restricted

QSOS OSMM OpenBRR

S
tr

a
te

g
y

L
ic

e
n
s
e Permissiveness = Product .. License permissiveness

and alternatives
NONE

Protection against
proprietary forks

~ Product .. License permissiveness
and alternatives

NONE

Copyright owners (Size of
copyright owning team)

NONE NONE

Modification of source code
(Level of professionalism of
procedure for proposition of
modification.)

< Product .. Integrability of developer
community

~ Community Professionalism ..
Integrability / permeability of core
developer team

Roadmap (availability +
precision of the roadmap)

NONE NONE

Sponsor (Driving force behind
product)

= Product .. Motivating force behind
project

= Community Professionalism ..
Independence of Management
Community

Strategical independence NONE ~ Community Professionalism ..
Independence of Management
Community

P
ro

v
id

in
g

S

e
rv

ic
e
s

M
a

in
ta

in
a

b
ili

ty Quality of Source Code
(Volume of comment and
use of design pattern)

NONE ~ Architecture .. Scalability
~ Performance .. Performance
Tuning & Configuration (on user's
end)
~ Architecture .. Extensibility

Technological dispersion
(number of prog.lang.
used)

NONE NONE

Intrinsic complexity
(Complexity of algorithms)

NONE NONE

Technical documentation
(Design and arch doc +
others)

NONE ~ Documentation .. Documentation
diversity

C
o
d

e
 M

a
s
te

ry Direct availability (Number
of experts available within
a consulting company)

~ Use .. Diversity of support
community

~ Support .. professionalism of
support

Indirect availability
(Number of experts
available in partner
companies of serv. prov.)

~ Use .. Diversity of support
community

~ Support .. professionalism of
support

Overall, the OSMM criteria are well covered by the QSOS model, in particular, 11 of the 12 OSMM criteria
are covered by QSOS criteria. The only non-covered criterion of OSMM is Recency of standards followed. In
the 11 criteria covered, 7 identified as exact matches. In the 4 remaining cases, 3 are only approximate (~)
matches and the fourth one, “Diversity of user community mailing lists”, is identified as being included (<) in
the criteria “Adoption .. Contributing community” of QSOS.

 Copyright QUALOSS Consortium

27

Measurement Requirements Specifications

Deliverable ID: D1.2

Page : 28 of 88

Version: 1.3
Date: Mar 15, 07

Status : Proposal
Confid : Restricted

QSOS and OpenBRR have less coverage in common than QSOS and OSMM. Our transformed version of
OpenBRR has 24 leaf characteristics (compared to the 41 leaf characteristics of QSOS). Only 5 exact
matches, 4 include relationships are identified. 13 similarity relationships are also identified but only 6 of
these 13 cover QSOS characteristic that are not already covered by an exact match or an include
relationship. In turn, 15 OpenBRR (4 + 5 + 6) are covered by QSOS and 9 are not. The uncovered
characteristics are: “Usability .. UI learnability & Understandability”, “Quality .. Bug Reporting Activity (in past
6 months), all Security characteristics (“Reporting activity on product vulnerability”, “Reactivity on security
bugs”, and “Community involvement on security issues”), “Performance .. Testability for performance
(including presence of testsuite and benchmark reports), “Architecture .. Feature configurability (on user's
side)”, “Support .. Community reactivity to support questions”, and “Support .. Diversity of documentation
contributors”.

We could perform a complete comparison between OSMM and OpenBRR however, we have most results
available in the the table above, the only completely missing relationships are those between OSMM and
OpenBRR characteristics not covered by QSOS. This case is covered next.

The only non-covered characteristics of OSMM is “Recency of standards followed”, none of the OpenBRR
cover this characteristics.

When building our comprehensive hierarchy of quality characteristics, we can use the results of our
comparison as follows.

• When characteristics are exact matches, only one of them needs to be inserted in our comprehensive

hierarchy. (we are left to chose the characteristic with the most adequate terminology)
• When two characteristics have an include relationship (A < B), then the comprehensive hierarchy may

decide to include both showing a parent-child relationship (where B is the parent of A) or it may also
decide to omit A, if B is already considered low-level enough. B is considered low-level enough if we can
foreseen metric formula to estimate B.

• When characteristics have similarity relationships (~), the procedure is not as systematic. We must

consider each characteristic involved in the relationship and decide whether to included in the same sub-
tree of the hierarchy or whether to include them in different sub-trees of the hierarchy (if possible, the
similarity (~) relationship should be kept explicit through a cross referencing mechanism, for example). A
characteristic in a “similarity” group may also be eliminated from the final hierarchy if it is completely
covered by other characteristics in that group. For example, in a group of characteristics A, B, and C, the
subgroup A and B cover the characteristic C in such case, C can be either eliminated.

3.2 DEFINITION OF EVOLVABILITY AND ROBUSTNESS FROM THE STATE OF THE ART AND PRACTICE

This section describes several quality models that represent the state of the art and practice in quality
modelling (Freimut et al., 2003; Hartkopf et al., 2007).

3.2.1 The Historic Models: McCall and Boehm

Two early models, original proposed by McCall (McCall et al., 1977) and Boehm (Boehm et al., 1973; Boehm
et al., 1976) are shown in Figure 12 and Figure 13.

 Copyright QUALOSS Consortium

28

Measurement Requirements Specifications

Deliverable ID: D1.2

Page : 29 of 88

Version: 1.3
Date: Mar 15, 07

Status : Proposal
Confid : Restricted

Figure 12: The product quality model proposed by McCall

Figure 13: The product quality model proposed by Boehm

 Copyright QUALOSS Consortium

29

Software
Quality

Reliability

Efficiency

Integrity

Usability

Correctness

Maintainability

Testability

Flexibility

Reuseability

Interoperability

Traceability

Operability

Training

Completeness

Consistency

Accuracy

Error Tolerance

Execution Efficiency

Storage Efficiency

Access Control

Access Audit

Generality

Communicativeness

Simplicity

Conciseness

Instrumentation

Self-Descriptiveness

Expandability

Comm.communal.

Modularity

Machine Indep.

System Independ.

Data. communal.

Portability

P
ro

d
u
c
t
O

p
e

ra
ti
o

n

P
ro

d
u

c
t
R

e
v
is

io
n

P

ro
d

u
c
t

T
ra

n
s
it
io

n

Software
Quality

Reliability

Efficiency

Integrity

Usability

Correctness

Maintainability

Testability

Flexibility

Reuseability

Interoperability

Traceability

Operability

Training

Completeness

Consistency

Accuracy

Error Tolerance

Execution Efficiency

Storage Efficiency

Access Control

Access Audit

Generality

Communicativeness

Simplicity

Conciseness

Instrumentation

Self-Descriptiveness

Expandability

Comm.communal.

Modularity

Machine Indep.

System Independ.

Data. communal.

Portability

P
ro

d
u
c
t
O

p
e

ra
ti
o

n

P
ro

d
u

c
t
R

e
v
is

io
n

P

ro
d

u
c
t

T
ra

n
s
it
io

n

General
Utility

As-Is
Utility

Maintain-
ability

Portability

Reliability

Efficiency

Human
Engineering

Testability

Understandability

Modifiability

Completeness

Accuracy

Consistency

Device Independence

Device Efficiency

Accessibility

Communicativeness

Structuredness

Self-Descriptiveness

Conciseness

Legibility

Augmentability

Measurement Requirements Specifications

Deliverable ID: D1.2

Page : 30 of 88

Version: 1.3
Date: Mar 15, 07

Status : Proposal
Confid : Restricted

Both models identify key characteristics of quality from a user perspective. These key characteristics (called
factors, synonymous with quality characteristics) are mostly high-level external characteristics (e.g.,
reliability, maintainability) but can also be internal ones (e.g., testability). These high-level characteristics are
refined into sub-characteristics called criteria, which represent an internal view on quality. These criteria are
supposed to influence the achievement of a key characteristic. Measures are used to measure the criteria.

From the QualOSS viewpoint; that is, for robustness and evolvability, the following sub-characteristics are
relevant:

• In McCall's model: reliability, efficiency, integrity, usability, maintainability, testability, flexibility, portability,

reusability, and interoperability.
• In Boehm's model: portability, reliability, efficiency, testability, understandability, and modifiability

3.2.2 Quality Model of the Deutsche Gesellschaft für Qualität

In the early 1980s the German Association for Quality (Deutsche Gesellschaft für Qualität e.V.(DGQ))
formed a working group to come up with a recommendation on how quality for software can be achieved.
The group consisted of employees among others from Nixdorf Computer, IBM Germany, Siemens AG, or
Fraunhofer Institute for Production Technology. This initiative was meant to contribute to the observation that
software increasingly permeated all kinds of products and that the same quality rules should be applied for
software as for any other industrial good. The result of this effort was published in 1986 (DGQ, 1986).

The focus of the work is how to build up, organize, and run an entire software quality assurance organization.
Principles, activities, methods, tools of software quality assurance are describes as well as economic and
legal aspects. Furthermore, they came up with a model that distinguishes between software quality
characteristics for software programs and software documentation.

The quality model defines twelve quality characteristics for software programs. Figure 14 depicts the quality
characteristics (yellow) and if refined the sub-characteristics (green). Every quality characteristic is defined
and described as far as possible with respect to sub-characteristics, metrics, constructive activities to
achieve the quality, testing methods, scope of testing, documentation of testing, impact of characteristic to
quality costs, quality documentation, application context of characteristic, and mutual impact to other quality
characteristics. Table 2 and Table 3 give an example for the quality characteristics “maintainability” and
“robustness”, respectively.

From the QualOSS viewpoint, the following characteristics are relevant: adaptability, usability, efficiency,
maintainability, portability, robustness, safety/security, interoperability, reusability, and reliability.

 Copyright QUALOSS Consortium

30

Measurement Requirements Specifications

Deliverable ID: D1.2

Page : 31 of 88

Version: 1.3
Date: Mar 15, 07

Status : Proposal
Confid : Restricted

Aspect Description

Definition: Maintainability Suitability for detecting and removing faults (i.e., causes of failures).

Sub-characteristics Learnability, manageability, interpretability

Metrics In general, through average (or total) amount of time and knowledge
required for maintenance tasks under given constraints.

Constructive
activities

- Guidelines for design and coding
- Naming conventions
- Rules for maximum complexity of modules
- Guidelines for documentation- ….

 Copyright QUALOSS Consortium

31

Measurement Requirements Specifications

Deliverable ID: D1.2

Page : 32 of 88

Version: 1.3
Date: Mar 15, 07

Status : Proposal
Confid : Restricted

Aspect Description

Testing methods - Checklists
- Collect metrics (effort of maintenance tasks)- …

Scope of testing The entire program including documentation must be tested.

Documentation of
testing

The testing must be documented.

Impact of characteristics to
quality costs

Additional costs for appropriately documenting and structuring the
system can be high. However, these additional costs are usually lower
than expected costs caused by low maintainability.

Quality documentation Regular reports on
- failures / faults
- reffort and qualifications for fault removal- …

Application context High maintainability is usually important for software with high availability
requirements (operating systems etc.). Company-specific reasons can
also demand for high maintainability.

Mutual impact to other
characteristics

- High maintainability increases adaptability, portability, reusability,
correctness, and reliability of the system.
- Maintainability can have a negative influence on efficiency, depending
on the selected implementation technique.

Table 2: Description of the characteristic "maintainability"

 Copyright QUALOSS Consortium

32

Measurement Requirements Specifications

Deliverable ID: D1.2

Page : 33 of 88

Version: 1.3
Date: Mar 15, 07

Status : Proposal
Confid : Restricted

Aspect Description

Definition:
Robustness

Suitability of a program to show correct/defined behavior under
erroneous conditions (hardware, input, or runtime errors).

Sub-characteristics Not refined into sub-characteristics

Metrics Usually specified in terms of input errors, e.g.,

R
E
=

Number of checked inputs

Total number of inputs

Inputs, in this case, include explicit input data as well as parameters.
Total number of inputs also includes data outside of the definition
domain. If the program responds correctly to those, RE approaches 1.
This is to be seen as heuristic, as it is usually not possible to prove RE for
all possible inputs.

Constructive
activities

- Plausibility check for each input datum and parameter
- Rollback for write operations
- System recovery in case of system errors
- Using existing data to estimate missing data; for incorrect data, use
self-correction
- Check hardware components for availability and correctness.

Testing methods - Checklist for existence of constructive activities
- test with incorrect data (i.e., data outside of definition domain)

Scope of testing The entire program must be tested, however, exact scope depends on
goal of test:
- detect all faults --> 100% coverage needed
- determine quality of system, find and remove faults --> (random)
samples may be sufficient

Documentation of
testing

The testing must be documented.

Impact of characteristics to
quality costs

Costs for reaching appropriate robustness can be high. However, failure
costs decrease (e.g., for system breakdown).

Quality documentation -

Application context High maintainability is usually important for software with intensive user
interactions, systems with high availability requirements (e.g.,
process/workflow software), systems that operate in noisy environments.
Company-specific reasons can also demand for high maintainability.

Mutual impact to other
characteristics

- High robustness increases usability, safety, and reliability of the system.
- Robustness decreases efficiency, as additional checks are necessary.

Table 3: Description of quality characteristic "robustness"

3.2.3 FURPS/FURPS+

The FURPS/FURPS+ model was developed at Hewlett Packard (HP) to improve the quality of their products
(Grady and Caswell, 1987). HP employs FUPRS+ as a means to drive customer satisfaction goals by
supporting the identification of measurable product metrics (Grady, 1992).

 Copyright QUALOSS Consortium

33

Measurement Requirements Specifications

Deliverable ID: D1.2

Page : 34 of 88

Version: 1.3
Date: Mar 15, 07

Status : Proposal
Confid : Restricted

FURPS+ defines five quality characteristics (Functionality, Usability, Reliability, Performance,
Supportability), which are divided into 27 sub-characteristics (see Figure 15). The authors do not describe
how they obtained their model.

 Copyright QUALOSS Consortium

34

Measurement Requirements Specifications

Deliverable ID: D1.2

Page : 35 of 88

Version: 1.3
Date: Mar 15, 07

Status : Proposal
Confid : Restricted

Each of the quality criteria maps to one or more metrics. The FURPS model is used to simplify the process of
defining the appropriate measurements in each life cycle phase (Specification / Design / Implementation /
Testing / Support), through focusing on specific quality characteristics.

Using the FURPS model involves two steps: establishing priorities and making quality attributes measurable.
Establishing priorities is important because of the trade-offs involved between quality factors. Through
addition of a new function, functionality might be improved but performance, usability, and/or reliability
decreased. Thus the decision has to be made, what type of quality is relevant in this project and a prioritized
list of quality factors has to be defined. At this point of the project it should be made clear what is really
important and how the priorities in quality affect cost and complexity of the product. Further a ranking of the
quality criteria for the top quality factors can be performed.

Once priorities have been established, measurable goals for each quality factor have to be defined. These
measures are, as the priorities, project specific and also depend on the phase of the life cycle. Table 4 lists
some FURPS+ metrics through the whole product life cycle for usability, reliability, and supportability, which
are FURPS' relevant characteristics for QualOSS.

 Copyright QUALOSS Consortium

35

Measurement Requirements Specifications

Deliverable ID: D1.2

Page : 36 of 88

Version: 1.3
Date: Mar 15, 07

Status : Proposal
Confid : Restricted

Life
cycle
Phases

Specification Design Implementation Testing Support

U
s
a
b

il
it

y

target users
to review
specification
or prototype

% grade on
documentatio
n plan by
target users

% grade on
usability of
prototype

% grade of
design as
compared to
objectives

changes to
prototype
manuals after
review

% grade by
other lab user

% grade by
product
marketing,
documentation

% original users
to review any
change

changes to
product after
alpha test

% grade from
usability lab
testing

% grade by test
sites

user
misunderstand
ings

R
e
li
a
b

il
it

y

omissions
noted in
reviews of
objectives

changes to
project plan,
test plan after
review

changes to
design after
review due to
error

% grade of
design as
compared to
objectives

% code changes
due to
reliability
errors
discovered in
reviews

% code covered
by test cases

defects/
KNCSS during
module testing

MTTF (MTBF)

% hrs reliability
testing

defects/1 K hrs

defects total

defect rate
before release
checkpoints

known
problem
reports

#
defects/KNCS
S

S
u

p
p

o
rt

a
b

il
it

y

changes to
support after
review by field
& CPE

design
changes by
field & CPE

diagnostic/
recovery
changes by
field & CPE
input

MTTR objective (time)

MTTC objective (time)

time to train tester, use of documentation

Table 4: Excerpts of metrics to be measured in different life cycle phases with respect to performance

MTTF: Mean Time To Failure
MTBF: Mean Time Between Failure
MTTC: Mean Time To Change
MTTR: Mean Time To Recovery
CPE: Current Product Engineering
KNCSS: Kilo-lines of NonComment Source Statements

The second approach on how to apply FURPS is given in (Grady, 1992). A three step procedure is
proposed:

• Use the FURPS+ quality model (see Figure 6) as a checklist and refine the quality characteristics

according to the Goal-Question-Metric paradigm. For example, identify the goal “optimize delivered
product functionality” and ask the question “What functions do the customers need now?”

 Copyright QUALOSS Consortium

36

Measurement Requirements Specifications

Deliverable ID: D1.2

Page : 37 of 88

Version: 1.3
Date: Mar 15, 07

Status : Proposal
Confid : Restricted

• Select metrics that help to know how well the product is satisfying customer’s needs and wants. It is

important to measure the progress toward final, measurable product goals throughout product definition
and development. An example is shown for the quality characteristic “functionality” in Table 7.

• Include the characteristics in the quality plan and document how the quality characteristics respectively

metrics are measured in every life cycle phase.
FURPS itself does not contain a technique to derive the metrics for the quality criteria. In general this
derivation is context and project (customer) dependent, unless a static definition of quality is given. Goal
oriented measurement approaches can help in finding the appropriate metrics. In praxis some metrics will be
reused from project to project, though this is not recommended.

The perspective of the quality factors and the quality criteria is product and customer oriented. Thus FURPS,
similar to ISO 9126, has a product view on quality, but user oriented. So FURPS is a loose integration of the
user and the product view. In the context of embedded systems it should be mentioned that the FURPS
model has been used in the development for software and for hardware/software systems. Experience
showed that aspects of reliability and supportability were heavily influenced by hardware design decisions.

Even if little data is available HP claims that they could reduce the development cost and the number of
errors per 1000 Lines of Code in the source code significantly (Balzert, 1998).

3.2.4 Quality Model of the NASA SATC

The NASA Software Assurance Technology Center (SATC) (Hyatt and Rosenberg, 1996) developed a
quality model with the specific purpose of supporting project managers. The aim behind the selection of this
particular viewpoint was to motivate NASA project managers to dedicate part of their project budgets to
quality modelling. Tangible benefits such as increased information on the development process and its risks,
increased confidence that the software will be usable when completed, and real cost savings such as
decreased test time, were considered important motivators for this target group. Consequently, the software
product quality attributes were defined based on corresponding project risks.

The SATC analyzed three fixed model approaches, namely those of McCall, Boehm, and ISO 9126/1993,
but found them not to satisfy their needs. For this reason, they came up with their own quality model, which,
in compliance with the ISO 9126/1993, distinguishes among quality goals, attributes, and metrics. The
objectives of the model definition were, first, to determine an orthogonal set of attributes and metrics (i.e.,
each attribute and metric appears only once in the model), and second, to define metrics that can be based
on objective process and product data, instead of, for example, expert assessments. The quality model is
depicted in Figure 16.

Only some of the attributes identified in this model are relevant to the QualOSS project. In particular,
attributes related to the goal “Product Quality and Risk” are specially relevant because they are directly
related to source code. The following list briefly describes these attributes (descriptions were taken from
(Hyatt and Rosenberg, 1996):

• Structure/Architecture: the evaluation of the constructs within a module to identify possible error-
prone modules and to indicate potential problems in usability and maintainability.

• Reuse: the suitability of the software for reuse in a different context or application.

• Maintainability: the suitability of the software for ease of locating and fixing a fault in the program.

• Documentation: the adequacy of internal code documentation and external documentation.

The SATC report describes a number of approaches to measure these attributes directly on a system's
source code.

 Copyright QUALOSS Consortium

37

Measurement Requirements Specifications

Deliverable ID: D1.2

Page : 38 of 88

Version: 1.3
Date: Mar 15, 07

Status : Proposal
Confid : Restricted

The correctness attribute in goal “Testing Effectivity” is also relevant for our purposes. The measures
proposed by SATC for this attribute are, however, more related to the project than to the product itself, and
would have to be adapted to be applicable to F/OSS projects.

3.2.5 The Standard: ISO9126

The standard quality model as proposed in ISO9126 is shown in Figure 17. This model was developed in the
early 1990s as an attempt to consolidate the many views of software quality (e.g., Boehm, McCall, FURPS).
Its objective was to act as worldwide standard. In 2001, a revision was agreed. The newer version retains the
same software quality characteristics as the older one. Major differences concern amongst other issues the
introduction of normative sub-characteristics, the introduction of quality in use, or the co-ordination with the

 Copyright QUALOSS Consortium

38

Measurement Requirements Specifications

Deliverable ID: D1.2

Page : 39 of 88

Version: 1.3
Date: Mar 15, 07

Status : Proposal
Confid : Restricted

content of ISO/IEC 14598, which defines process quality, which in turn contributes to improving product
quality, and product quality contributes to improving quality in use.

Figure 17: ISO 9126 Quality Model

The ISO 9126 quality model framework distinguishes between internal and external quality and quality in
use. Internal quality is defined as “the totality of characteristics of the software product from an internal view”.
In contrast to internal quality, external quality is defined as “the totality of characteristics of the software
product from an external view. It is the quality when the software is executed, which is typically measured
and evaluated while testing in a simulated environment with simulated data using external metrics.” Quality in
use is defined as “the user’s view of the quality on the software product when it is used in a specific
environment and a specific context of use. It measures the extent to which users can achieve their goals in a
particular environment, rather than measuring the properties of the software itself”. The standard ISO 9126 is
divided into four parts. The first part introduces the concept of product quality using quality models in
general. Part two to four are Technical Reports, each one of them assigned to one quality type. Quality can
be described with attributes1. Internal and external quality attributes are directly assigned to the software
product, whereas quality in use attributes describe the effect of the software product in specific contexts of
use.

3.3 DISCUSSION

The quality models presented in Section 3.2.1 through Section 3.2.5 focus mostly on product measurement.
On the other hand, existing F/OSS rating or assessment methodologies, presented in Section 3.1, focus on
community measures and largely neglect product measurement. Moreover, they do not define their quality
characteristics; that is, they can be said to be rather unsystematic. The QualOSS quality model has to take
into account the whole project; that is, product and community aspects; thus, the approach taken in
QualOSS has to be to bring these two worlds together.

4 RESULTS FROM INTERVIEWS

The goal of this section is to define the goal for the QualOSS quality models from the stakehoders' viewpoint.
Therefore, we conducted a series of structured interviews to elicit usage scenarios for F/OSS software, and
to elicit evaluation criteria for F/OSS software applied by stakeholders in practice.

 Copyright QUALOSS Consortium

39

Software
Quality

Suitability
Accuracy

Interoperab.
Security

Compliance

Portability
Maintain-

ability
EfficiencyUsabilityReliability

Functio-
nality

Maturity
Faulttolerance
Recoverability
Compliance

Understandab.
Learnability
Operability

Attractiveness
Compliance

Time-behavior
Resource Use.

Compliance

Analysability
Changeability

Stability
Testability

Compliance

Adaptability
Installability

Co-existence
Replaceability
Compliance

Measurement Requirements Specifications

Deliverable ID: D1.2

Page : 40 of 88

Version: 1.3
Date: Mar 15, 07

Status : Proposal
Confid : Restricted

4.1 USAGE SCENARIOS

Usage scenarios define how OSS will be used in organizations. In that way, usage scenarios define the
organizational context and determine the goals of OSS evaluation. They will influence the used quality
models insofar as different attributes or subcharacteristics will have a different importance (or weight); for
example, analyzability plays a minor role if products are used “as is” (e.g., Apache), but when a F/OSS
component has to be integrated into a company's product, readability is of crucial importance.

Usage scenarios will be defined through the survey by practitioners and by academia as well as consulting
with all QUALOSS partners, especially, our Industrial partners, AdaCore and ZEA partners.

The resulting scenarios can be classified along two dimensions: Granularity of the F/OSS component, and
the goal environment (see Figure 18).

The granularity of F/OSS component determines whether it is used as is (end-application), or whether it is
used to build an application (platform level). For example, a webserver, such as Apache, is used to build
web-applications on top of it, while office products, such as OpenOffice, are typically not modified and used
as-is.

The goal environment for F/OSS component describes in which context the F/OSS component is intended to
be used: Embedded, as part of an external service, internal service, as desktop application, or for
development infrastructure. Obviously, if an F/OSS component is part of an external service, priorities of
quality requirements (which would be mainly reliability) on it are different than when it is used as Desktop
application (where usability plays a major role).

Figure 18: Structure of F/OSS usage scenarios

In addition to the categories of scenarios identified above, the intended F/OSS usage, type of F/OSS
component and product characteristics of the product that integrates F/OSS components have to be
considered.

Associated types of intended F/OSS usage include:

• Integrate an F/OSS product into a company's infrastructure (for example, using Apache as a web server

for my website)

 Copyright QUALOSS Consortium

40

Asterisk

sendmail

Embedded Development(internal)
Service

Desktop

End-
Application

Platform

JBoss

Apache Gnome

OpenOffice

FireFox

Eclipse

JUnit

Maiden

libc

Goal environment
(FLOSS component)

G
o
a

l
g

ra
n

u
la

ri
ty

(F

L
O

S
S

 c
o

m
p
o

n
e
n

t)

maemo

(external)
Service

Linux

Asterisk

sendmail

JBoss

Apache

Measurement Requirements Specifications

Deliverable ID: D1.2

Page : 41 of 88

Version: 1.3
Date: Mar 15, 07

Status : Proposal
Confid : Restricted

• Integrate an OSS product/components into a software product/system developed by a company (for

example, using mysql as a part of a bug tracking system I develop)
• Fork an existing open source component (ex. Gforge forks from SourceForge)

• Extend an open source product to communicate with my product (independent of my product's license)

• Select an Open Source Language and Libraries to develop my product on (Ex. Using Python to develop

an ERP or Ada for a air traffic control system)

Type of F/OSS components:

• A system (or product) integrates an open source Database technology (mysql, Postgres, ZODB,

db4object, etc) or even an Object-Relational mapping technology such as Hibernate.
• A system (or product) integrates an open source Middleware (for distributed computing such as Zope,

jboss, jonas, geronimo, etc or even grid computing, Globus, InnerGrid) or a Distributed framework such
as the Spring framework for java.

• A system (or product) integrates a visualisation libraries: Tk, SWT, dot and Graphviz, etc)

• A system (or product) integrates domain-specific computational libraries (such as financial computation

modules or specific modules for matrix operations)

Product characteristics:

• The system (or product) that integrates OSS has safety critical issues associated with it

• The system (or product) that integrates OSS is embedded

• The system (or product) that integrates OSS is distributed

• The system (or product) that integrates OSS runs on a Grid

• The system (or product) that integrates OSS runs locally on a single machine

4.2 QUALITY MODEL FROM INTERVIEWS

The goal of the interviews was to probe the relevant quality aspects used by F/OSS users in industry when
assessing F/OSS components. The approach we followed was to elicit goals from industrial partners through
a structured interview. In total, we interviewed nine practitioners, in most cases IT responsibles in their
organizations, from five different domains: OSS developer/integrator, general IT, (web-based) Services,
Health care, and public administration.

Preliminary results indicate that in all cases, the evaluation criteria for F/OSS components are ad-hoc; that is,
usually one expert does the evaluation using (often implicit) criteria for evaluating required product qualities.
In the interviews, we tried to elicit these criteria, as they can serve as basis for a definition of evolvability and
robustness from the practitioners' viewpoint.

Figure 19 shows the preliminary results from the interviews concerning relevant quality criteria for evaluation
of F/OSS components. There are four top-level constructs that users are interested in: Functionality,
robustness, level of support, and evolvability.

 Copyright QUALOSS Consortium

Robustness EvolvabilityFunctionality
Support /
Service

Stability

Validation
of Robustness

Performance

Readability TestabilitySuitability

Safety
Standard

Adherence
Maintainability

Community
Quality

Project
Maturity

41

Measurement Requirements Specifications

Deliverable ID: D1.2

Page : 42 of 88

Version: 1.3
Date: Mar 15, 07

Status : Proposal
Confid : Restricted

Functionality: Typical evaluation criteria are performance and suitability to the problem to be solved; in
some cases, stability and safety are considered as part of the required functionality. These criteria are
usually evaluated by conducting “ad-hoc” testing.
Robustness: Typical evaluation criteria are stability, safety, maturity, and community quality. In addition,
readability, adherence to standards, and testability are considered as enhancing robustness, as they
increase the evaluator's trust into the product.
Support: Evaluation criteria are community quality, and maturity
Evolvability: Typical evaluation criteria are maturity, readability, adherence to standards, testability, and
maintainability.

In the following, we elaborate on the criteria used to evaluate robustness and evolvability.

Community quality: Evaluation criteria used are the continuity of the community (i.e., whether the project
will go on further), activity in mailing lists, whether developers with reputation are in the team, the size of the
community, whether company support exists for the community, quality of responses to questions / ability of
the community to explain questions, and response time for bug fixes.
Continuity of the community is evaluated by looking at the frequency of releases, ease of updates, whether
the project is based on standards, existence of a roadmap and evaluation of previous timeline, and the
project is sufficiently focused to guarantee future survival.
Project maturity: This is evaluated by using criteria such as that the project should be “not too young” (i.e.,
age of the project), neither should it be a closed project, success cases should exist in large companies, a
stable version of the product should be available, and user opinions and OSS community views should be
generally positive.
Stability and safety: These criteria are evaluated by looking at user opinions in mailing lists, and by doing
ad-hoc tests.
Readability, maintainability and testability: These criteria are evaluated by looking at the clarity of code,
use of standards in the project, and at code documentation. That is, the interviewed persons do not
distinguish between these different quality attributes, except by using different implicit criteria in testing.
Standard adherence: Main evaluation criterion is whether the project adheres to relevant development
standards, such as design patterns or existing libraries. Concrete criteria used are typically defined ad-hoc
by the evaluators.

The insights from the interviews will provide one input for defining a quality model for evolvability and
robustness of F/OSS components. Another input is a literature review, which shall be detailed in the next
section.

5 CONSOLIDATED MEASUREMENT REQUIREMENTS FOR QUALOSS

This section describes the goals derived from the usage scenarios. It also contains the consolidated
QualOSS definition of robustness and evolvability in terms of quality characteristics and sub-characteristics.
In terms of GQM, this would be the goals and questions of GQM. Metrics for the questions will be defined in
task 1.3.

5.1 BUSINESS GOALS

Business goals can exist on different levels of hierarchy; on the lowest level, they represent software goals,
i.e., business goals that explicitly refer to software development.

Business and software goals can be described using the following template:

 Copyright QUALOSS Consortium

42

Measurement Requirements Specifications

Deliverable ID: D1.2

Page : 43 of 88

Version: 1.3
Date: Mar 15, 07

Status : Proposal
Confid : Restricted

Name Name of the business goal.
Description Narrative description of the business goal.
Activity Activity that is supported with the business goal (e.g., improve, stabilize, check).
Focus The focus of the business goal (e.g., cost, profit, turnover).
Object The object to which the business goal relates (e.g., people, market, a project, a

collection of projects).
Quantification Quantification of the business goal (e.g., max. 10% budget overrun).
Timeframe Timeframe in which the business goal is to be pursued (e.g. 5 years)
Scope Scope or context of the activity (e.g., single development project, collection of

processes, whole organization)

So far, we identified the following main business goals:

Name Productivity
Description Through F/OSS usage, the productivity will be increased, as much functionality is

already available without having to implement it.
Activity Improve
Focus Productivity
Object Project
Quantification <unable to specify at the moment>
Timeframe n/a
Scope All projects in a company

Name Time To Market
Description Through F/OSS usage, the time to market will be reduce, as much functionality is

already available without having to implement it.
Activity Improve
Focus Time to market
Object Project
Quantification <unable to specify at the moment>
Timeframe n/a
Scope All projects in a company

Name Software Quality
Description Through F/OSS usage, the quality of produced software will be increased, as (and

if) the used F/OSS component already has a high quality.
Activity Improve
Focus Software quality
Object Product
Quantification <unable to specify at the moment>
Timeframe n/a
Scope All projects in a company

5.2 MEASUREMENT GOALS

Software goals can be refined into measurement goals, which specify concrete goals to be pursued by data
measurement. Measurement goals can be described using the GQM template:

 Copyright QUALOSS Consortium

43

Measurement Requirements Specifications

Deliverable ID: D1.2

Page : 44 of 88

Version: 1.3
Date: Mar 15, 07

Status : Proposal
Confid : Restricted

Name Name of the measurement goal.
Description Narrative description of the measurement goal.
Business goals Name of related business or software goal.
Object The object to which the measurement goal relates
Purpose Purpose of the measurement/analysis (e.g., characterize, predict)
Quality focus The object's quality attribute that is addressed by measurement.
Viewpoint The viewpoint or role from which the analysis is done
Context The context (and thus, planned area of validity) of the analysis

In the context of QualOSS, we have two top-level measurement goals: To measure evolvability and
robustness:

Name Evolvability
Description Evolvability is the general ability of a F/OSS project to deliver useful products (or

product updates) over an extended period of time
Business goals Productivity, Software Quality
Object Two objects: (1) the F/OSS product, and (2) the respective community
Purpose Characterize
Quality focus Evolvability
Viewpoint F/OSS users
Context F/OSS component evaluation

Name Robustness
Description Robustness is the general ability of a F/OSS project to deliver robust products over

an extended period of time
Business goals Productivity, Software Quality
Object Two objects: (1) the F/OSS product, and (2) the respective community
Purpose Characterize
Quality focus Robustness
Viewpoint F/OSS users
Context F/OSS component evaluation

5.3 DEFINITION OF QUALOSS QUALITY INDICATORS

The purpose of this section is to refine the top-level measurement goals into quality characteristics that still
representing measurement goals. These quality characteristics are then refined into sub-characteristics,
which represent GQM-questions.

Thereby, the quality sub-characteristics are defined such that they represent measurement goals. Using the
template presented above, the information on object, purpose, viewpoint, and context will be identical for all
measurement goals. Therefore, we will only define quality characteristics themselves, and the information
given as part of their definition can be used to complete the measurement goal template in the following way:

 Copyright QUALOSS Consortium

44

Measurement Requirements Specifications

Deliverable ID: D1.2

Page : 45 of 88

Version: 1.3
Date: Mar 15, 07

Status : Proposal
Confid : Restricted

Name --> Name of quality characteristic

Description --> see description/definition of quality characteristic

Business goals All goals relate to both business goals: productivity and software quality
Object Product or community, depending on whether the quality characteristic refers to

community or product
Purpose characterization
Quality focus --> the name also represents the quality focus

Viewpoint F/OSS users
Context F/OSS component evaluation

5.3.1 Rationale

In this section, we propose two hierarchies of quality characteristics to define evolvability and robustness.
We consider these hierarchies to be particularly suited for F/OSS projects. The four sources used these
hierarchies were the ISO 9126 and IEEE 610 standards, relevant scientific literature, the surveyed F/OSS
assessment methodologies, and our interviews with F/OSS users.

To organize our definitions of robustness and evolvability as well as to improve their presentation, we
subdivide quality characteristics into subcharacteristics as necessary.

The definition of the quality characteristic hierarchies is based on a few premises:

Premise 1: The hierarchies can be tailored to specific situations. Since it is generally easier to perform this
customization by discarding irrelevant quality factors rather than by adding new ones from scratch, we have
attempted at providing comprehensive hierarchies from which relevant factors can be selected for each case.
For example, a system that works in a closed environment may not have to deal with standardization issues
since it is not intended to communicate with other software. In that context, quality characteristics related to
standardization may simply be removed.

Premise 2: Our surveyed scientific literature differentiates software evolvability from software maintainability.
while maintainability is an intrinsic characteristic of a product, evolvability also encapsulates the community's
ability to handle software changes. It is important to state, that our concept of community encompasses the
users, developers and managers involved with the creation of a software product.

5.3.2 Evolvability

We define evolvability as the general ability of a F/OSS project to deliver useful products (or product
updates) over an extended period of time. Also the ability of such products to remain useful for an extended
period of time. In order to be able to decompose this wide notion into smaller criteria that can be studied
separately, we consider products and their related F/OSS community independently from each other. Figure
20 shows the resulting structure.

 Copyright QUALOSS Consortium

45

Measurement Requirements Specifications

Deliverable ID: D1.2

Page : 46 of 88

Version: 1.3
Date: Mar 15, 07

Status : Proposal
Confid : Restricted

• Product evolvability: The ability of a product to be corrected, adapted and extended over time, according

to the needs of its users.
• Usefulness of code documentation: The extent to which the source code documentation

(documentation explicitly describing the product's internals) is useful when performing corrections,
adaptations or extensions to the product.

• Actuality: The extent to which the code documentation describes the current version of the

source code as opposite to describing older versions of it.
• Coverage: The ratio between size of documented code and general product code size.

• Usefulness of user documentation: The extent to which the product's user/administrator oriented

documentation is useful when deploying and using the product.
• Actuality: The extent to which the user documentation describes the current version of the

product functionality as opposite to describing outdated functionality.
• Coverage: The ratio between the number of documented product features and the general

number of features offered by the product.
• Maintainability: The amount of effort required by a programmer or team of programmers with no

previous knowledge of the product, to understand its code to the point that successful
modifications are possible. IEEE: The ease with which a software system or component can be
modified to correct faults, improve performance or other attributes, or adapt to a changed
environment.

 Copyright QUALOSS Consortium

46

Measurement Requirements Specifications

Deliverable ID: D1.2

Page : 47 of 88

Version: 1.3
Date: Mar 15, 07

Status : Proposal
Confid : Restricted

• Product complexity: (IEEE) The degree to which a system or component has a design or

implementation that is difficult to understand and verify.
• Architecture flexibility: The ability of the product's architecture of being applied to new

problems. (IEEE) The ease with which a system or component can be modified for use in
applications or environments other than those for which it was specifically designed.

• Extensibility: The possibility of extending the architecture through external code

modules (add-ons, plug-ins) that do not require modifying the program's core.
(IEEE) The ease with which a system or component can be modified to increase
its storage or functional capacity.

• Portability: (IEEE) The ease with which a system or component can be transferred from one

hardware or software environment to another.
• Platform specificity: The degree to which a product's code is specific to a particular

hardware or software environment.
• Standard compliance: The degree to which a product complies with published standards

that are relevant to its functionality.
• Community evolvability: The likelihood that a F/OSS community remains able to maintain the product or

products it develops over an extended period of time.
• Product adoption: The extent to which a F/OSS product is actively used by individuals and

organizations around the world.
• User community size: The number of users (individuals and organizations) that use a

F/OSS product worldwide.
• Strategic importance: (aka. Mission criticality) The extent to which users of a product

apply it to mission-critical tasks. Alternatively, the degree to which users of a product
depend on the product for reaching their business goals.

• License permissiveness: The amount of freedom allowed to product users by the

product's licence.
• Developer community liveness: The amount of work put by a development community into the

creation and further development of a software product over a certain period of time.
• Developer community size: The number of individuals and organizations actively

contributing to a product's development over a certain period of time.
• Developer community activity: The general number and size of the contributions made to

a product's development over a certain period of time.
• Developer community heterogeneity: The degree to which different types of developers

(e.g., individuals vs. organizations, for-profit vs. non-for-profit organizations, hobbyists vs.
paid professionals) are present in a developer community.

• Fluctuation: The rate movement of people into, and out of a developer community over

time
• Process maturity: The ability of a developer community to achieve development related goals by

following established processes. Additionally, the level to which the processes followed by a
development community are able to guarantee that certain desired product characteristics will be
present in the product.

• Established process coverage: The degree to which the development activities a

community performs are covered by established, repeatable processes that are widely
known and accepted by community members. Development processes that have been
observed to be well established in existing development communities include project
management (i.e., milestone and roadmap definition, release management), quality
assurance (i.e., bug tracking, different forms of code and code change inspections) and
requirements engineering (i.e., product improvement proposals.)

• Process automation: The degree to which established processes are partially or

completely automated though the use of software tools. Examples of software tools
commonly used by development communities to automate software processes include
bug tracking systems, build farms and build daemons, and automated test suites.

 Copyright QUALOSS Consortium

47

Measurement Requirements Specifications

Deliverable ID: D1.2

Page : 48 of 88

Version: 1.3
Date: Mar 15, 07

Status : Proposal
Confid : Restricted

• Support availability: The ease with which a user can engage experienced individuals or

organizations (on a for-profit or voluntary basis) to perform tasks that make it possible to use a
product for a particular purpose.

• Modification support availability: The availability of support related to performing specific

modifications to a software product.
• Deployment support:The availability of support related to solving problems arising from

the deployment and use of a software product.

5.3.3 Robustness

Similar to evolvability, we define robustness at the highest level, as the general ability of a F/OSS project to
deliver robust products over an extended period of time (product robustness is defined below). Robustness is
influenced by intrinsic product factors as well as by community related factors. Figure 21 shows the resulting
structure.

• Product robustness: (IEEE) The degree to which a system or component can function correctly in the

presence of invalid inputs or stressful environmental conditions.
• Reliability: (IEEE) The ability of a system or component to perform its required functions under

stated conditions for a specified period of time.
• Failure tolerance (ISO 9126: maturity): The capability of the software product to avoid

failure as a result of faults in the software.
• Fault tolerance (ISO 9126): The capability of the software product to maintain a specified

level of performance in cases of software faults or of infringement of its specified interface.

 Copyright QUALOSS Consortium

48

Measurement Requirements Specifications

Deliverable ID: D1.2

Page : 49 of 88

Version: 1.3
Date: Mar 15, 07

Status : Proposal
Confid : Restricted

• Recoverability (ISO9126): The capability of the software product to re-establish a

specified level of performance and recover the data directly affected in the case of a
failure.

• Availability (IEEE): The degree to which a system or component is operational and

accessible when required for use.
• Security (ISO 12207): The capability of the software product to protect information and data so

that unauthorised persons or systems cannot read or modify them and authorised persons or
systems are not denied access to them. This includes measures and controls that ensure
confidentiality, integrity, and availability of IS assets including hardware, software, firmware, and
information being processed, stored, and communicated (CNSS, 2006).

• Confidentiality: The degree to which a system prevents unauthorized disclosure of

information; that is, provides assurance that information is not disclosed to unauthorized
individuals, processes, or devices. (CNSS, 2006)

• Integrity (ISO): The degree to which a system or component is able to protect the

accuracy and completeness of information and processing methods. This includes
preventing unauthorised modification or destruction of information (CNSS, 2006).

• Security Availability (ISO): The property of being accessible and useable upon demand by

an authorized entity. [ISO 7498-2: 1988]. Or, in other words, timely, reliable access to data
and information services for authorized users (CNSS, 2006).

• Compliance to standards: The degree to which a product complies with published

standards that are relevant to its functionality.
• Maturity:The degree to which the general, long-term objectives set for a product have been

reached by the current implementation.
• Age: The time span over which a product has been developed.

• Continuity: The regularity with which community contributions have been made to the a

product over its lifespan.
• Activity on stable development branch: The number and size of the contributions made to

a product's stable development branch over a certain period of time. High activity on a
branch declared to be stable can be a sign of low product maturity.

• Community robustness: The ability of the established processes in a community to guarantee the delivery

of robust products.
• Maturity of security process: The degree to which a development community has established

processes dedicated to guarantee the security of delivered products. Also, the degree to which a
community reacts effectively and timely when a security defect is found in a released product.

• Compliance: The degree to which the processes and procedures dealing with security

adhere to best practices and security standards
• Reaction time: The amount of time that is typically required for resolving security-related

issues
• Inclusion of preventive/reactive actions: The degree to which the community commits to

actions aimed at preventing security problems
• Maturity of reliability process: The degree to which a development community has established

processes dedicated to guarantee that delivered products are free of critical defects (defects that
prevent the operation of the product under common operation conditions). Also, the degree to
which a community reacts effectively and timely when a critical defect is found in a released
product.

• Compliance: The degree to which the processes and procedures dealing with reliability

adhere to best practices and security standards
• Reaction time: The amount of time that is typically required for resolving reliability-related

issues
• Inclusion of preventive/reactive actions: The degree to which the community commits to

actions aimed at preventing reliability problems

 Copyright QUALOSS Consortium

49

Measurement Requirements Specifications

Deliverable ID: D1.2

Page : 50 of 88

Version: 1.3
Date: Mar 15, 07

Status : Proposal
Confid : Restricted

5.3.4 Quality Factors Not Considered by QualOSS

There are several quality factors that are important to F/OSS users that will not be considered by the final
QualOSS model:

• Usability: The degree to which a product can be easily used, deployed, and administrated is a major factor

for adoption of a product. QualOSS does not focus on evaluating usability, however, although usability
and ease of deployment are partially evaluated as sub-characteristics to support availability.

• Functionality: The degree to which the F/OSS component fulfils desired functionality is a main criterion for

the decision on whether to adopt it. However, this always depends on the concrete user's needs and
situation, and a generic model for functionality can thus not be defined.

• Legal/License issues: Another major concern for adoption of F/OSS components is whether the intended

usage conflicts with the F/OSS license. However, neither robustness nor evolvability are directly or
indirectly influenced by these issues.

6 VALIDATION PLAN

This section presents the initial plan for validation of the QualOSS model to be developed in task 1.3. The
initial plan states evaluation goals and main constructs to be evaluated. The refinement of the validation plan
in terms of definition of hypotheses, metrics, and a study design, will be done as part of tasks 1.4-1.6. In
particular, the validation plan developed in workpackage 1 will form a validation framework that will be
enhanced and further refined in workpackages 4 and 5.

Validation goals have to be derived from goals of the technology or approach they are to evaluate. In the
case of QualOSS, the goals can be stated as follows:

• (A) The QualOSS model should deliver useful and reliable information to stakeholders

• (B) The QualOSS model reduces the risks involved in using F/OSS components

• (C) The QualOSS model reduces the time for assessment of F/OSS component

• (D) The QualOSS model helps OSS communities improve

This leads to two main categories of evaluation goals:

• Evaluate the appropriateness of the QualOSS model for the stakeholders (technology goals A and B)

• Evaluate the impact of the QualOSS model (technology goals C and D)

In the following, detailed evaluation goals for these categories will be listed and described using the GQM
goal template.

6.1 GOAL CATEGORY 1: EVALUATION OF APPROPRIATENESS OF QUALOSS MODEL

The evaluation goals in this category are concerned with evaluating whether the QualOSS model delivers
useful and reliable information to the stakeholders; that is, to evaluators of F/OSS components. The following
list defines some potential evaluation goals:

Evaluation goal 1: Evaluate definition of quality model (i.e., quality characteristic definition and prioritization)
with stakeholders.

Name EG1: Validity of the QualOSS model's definition.
Description Evaluate definition of quality model with stakeholders.
Object QualOSS model definition
Purpose characterize
Quality focus Validity of the QualOSS model (i.e., of the quality characteristic definition and

prioritization) compared to perception and intuition of QualOSS evaluators

 Copyright QUALOSS Consortium

50

Measurement Requirements Specifications

Deliverable ID: D1.2

Page : 51 of 88

Version: 1.3
Date: Mar 15, 07

Status : Proposal
Confid : Restricted

Viewpoint F/OSS evaluator
Context QualOSS evaluation in tasks 1.5 and 1.6
Evaluation Plan This can be done, for example, through interviews or a survey. The concrete setting

will be decided in task 1.6

Evaluation goal 2: Evaluate usefulness and usability of QualOSS model.

Name EG2: QualOSS model usefulness.
Description Evaluate usefulness and usability / ease of use of quality model for stakeholders.
Object QualOSS model
Purpose characterize
Quality focus Usefulness; i.e., the degree to which a person believes that the QualOSS model

provides support for effective evaluation of F/OSS components.
Usability; that is, the degree to which a person believes that using a particular
system would be free of effort. For the QualOSS model, this includes
• Ease of use of the QualOSS tools

• Interpretability of the QualOSS model output.

Viewpoint F/OSS user / evaluator
Context QualOSS evaluation in tasks 1.5 and 1.6
Evaluation Plan This can be done, for example, through a questionnaire to be filled in by users of

the QualOSS model. The concrete setting will be decided in task 1.6

Evaluation goal 3: Evaluate validity and reliability (accuracy) of QualOSS model; that is, the degree to
which the results of the QualOSS evaluation reflect the users' intuition and perception of F/OSS components.

Name EG3: Validity and reliability of the QualOSS model.
Description Evaluate validity and reliability of the quality model for stakeholders.
Object QualOSS model
Purpose characterize
Quality focus Validity: The degree to which a set of measurements measure the intended

construct. A valid measure is one which is measuring what it is supposed to
measure. Validity implies reliability (consistency)
Reliability: The degree to which a set of measurements is consistent; in other
words: the extent to which a set of questions can be treated as measuring a single
construct (or latent variable, such as robustness). In this case, whether the metrics
proposed for the quality (sub-)characteristics are consistently measuring the same
characteristic.

Viewpoint F/OSS user / evaluator
Context QualOSS evaluation in tasks 1.5 and 1.6
Evaluation Plan This can be done, for example, by applying the QualOSS model to a set of F/OSS

projects. Reliability can be calculated by comparing the values of metrics for
different characteristics. Validity needs also to take into account alternatives for
measuring the “true” quality characteristic; for example, by contrasting the
measurement with stakeholders' perceptions. The concrete setting will be decided
in task 1.6

6.2 GOAL CATEGORY 2: EVALUATION OF QUALOSS MODEL IMPACT:

The evaluation goals in this category are concerned with evaluating whether the quantifiable benefit that the
QualOSS model creates for stakeholders; that is, for evaluators of F/OSS components. As this implies that
the QualOSS model is applied in real projects, evaluation of these aspects is part of workpackage 5. The
following list defines some potential evaluation goals:

 Copyright QUALOSS Consortium

51

Measurement Requirements Specifications

Deliverable ID: D1.2

Page : 52 of 88

Version: 1.3
Date: Mar 15, 07

Status : Proposal
Confid : Restricted

Evaluation goal 4: Evaluate whether using the QualOSS model reduces the risk involved in using F/OSS
components from stakeholders' viewpoints

Name EG4: Risk reduction through QualOSS model .
Description Evaluate the degree to which the QualOSS quality model reduces the risk of using

F/OSS components for stakeholders.
Object QualOSS model
Purpose characterize
Quality focus Degree of risk reduction
Viewpoint F/OSS user / evaluator
Context QualOSS evaluation in workpackage 5
Evaluation Plan This can be done, for example, through a questionnaire (aimed at perceived risk

reduction) to be filled in by users of the QualOSS model. The concrete setting will
be decided in workpackage 5

Evaluation goal 5: Evaluate whether using the QualOSS model reduces the cost for F/OSS assessment

Name EG5: Assessment cost reduction through QualOSS model .
Description Evaluate the degree to which the QualOSS quality model reduces the cost of

assessing F/OSS components.
Object QualOSS model
Purpose characterize
Quality focus Degree of assessment cost reduction. Assessment cost can be measured through

effort required for F/OSS assessment
Viewpoint F/OSS user / evaluator
Context QualOSS evaluation in workpackage 5
Evaluation Plan This can be done, for example, in a case study setting, by measuring the amount of

effort required by manual assessment, and by contrasting these findings to those of
the QualOSS model. The concrete setting will be decided in workpackage 5

Evaluation goal 6: Evaluate whether the OSS communities accept and adopt the QualOSS model. It is one
of the goals of QualOSS to create such an impact in the F/OSS community. However, it is questionable
whether this impact can be expected until the end of the project.

Name EG6: Adoption of QualOSS model .
Description Evaluate the degree to which the QualOSS quality model is adopted by the F/OSS

community.
Object QualOSS model
Purpose characterize
Quality focus Degree of adoption
Viewpoint F/OSS user / evaluator
Context QualOSS evaluation in workpackage 5
Evaluation Plan This can be done, for example, by determining the number of F/OSS projects that

adopt the QualOSS model. The concrete setting will be decided in workpackage 5

7 SUMMARY AND CONCLUSIONS

This report defines the goals and measurement requirements for QualOSS quality models. In this report, we
review relevant definitions of robustness and evolvability in F/OSS assessment approaches and in the state
of the art and practice of quality models. Additionally, we take into account stakeholders' perceptions and
requirements through a series of interviews.

 Copyright QUALOSS Consortium

52

Measurement Requirements Specifications

Deliverable ID: D1.2

Page : 53 of 88

Version: 1.3
Date: Mar 15, 07

Status : Proposal
Confid : Restricted

Goals and requirements for the QualOSS model are defined in terms of (a) business and measurement
goals, (b) a consolidated definition of quality characteristics for evolvability and robustness from related work
and from stakehoders' views, and (c) an initial plan for validation of the QualOSS model.

Further work is still required. In particular, the QualOSS model needs to be further refined into metrics; this is
part of task 1.3. We foresee that part of task 1.3 will be to develop an assessment method for evaluating the
community maturity, as approaches to evaluate associated processes have so far not been considered in
F/OSS assessment methods.

In addition, further refinement of the initial validation plan will be done in tasks 1.4-1.6. Main goals of the
validation in workpackage 1 will be to evaluate the validity of the QualOSS model's definition with
stakeholders. The workpackages 4 and 5 will continue to refine the validation plan. Workpackage 5 will
particularly be concerned with validating business goals and the validity and reliability of the QualOSS
model.

 Copyright QUALOSS Consortium

53

Measurement Requirements Specifications

Deliverable ID: D1.2

Page : 54 of 88

Version: 1.3
Date: Mar 15, 07

Status : Proposal
Confid : Restricted

REFERENCES

(Agresti et al., 2002) William W. Agresti, Victor R. Basili, Gianluigi Caldiera, and H. Dieter Rom-bach,
Encyclopedia of Software Engineering. Volume 1., ch. Measurement, pp. 762--775. John Wiley
Sons, 2002

(Balzert, 1998) Helmut Balzert, Lehrbuch der Software-Technik: Software-Management, Software-
Qualitätssicherung, Unternehmensmodellierung. Spektrum, Aka-demischer Verlag, 1998

(Basili, 1985) V. R. Basili, “Quantitative Evaluation of Software Engineering Methodology”, Proceedings of
the First Pan Pacific Computer Conference, Melbourne, Australia, Vol. 1 pp. 379-398, 1985.

(Basili, 1992) Basili, Victor R., "Software Modeling and Measurement. The Goal/Question/Metric Paradigm",
Computer Science Technical Report Series NR: CS-TR-2956 / NR: UMIACS-TR-92-96, 1992.

(Basili et al., 1994) Basili V.R., Caldiera G., and Rombach H.D. Experience Factory, The Encyclopedia of
Software Engineering, Volume I, Pages 469-476, John Wiley & Sons, 1994.

(Basili et al., 2002) V. R. Basili, F. E. McGarry, R. Pajerski, and M. V. Zelkowitz. Lessons learned from 25
years of process improvement: The rise and fall of the NASA software engineering laboratory. In
IEEE Computer Society and ACM International Conference on Software Engineering (ICSE
2002), May 2002

(Basili and Rombach, 1988) V.R. Basili, H.D. Rombach, “The TAME Project: toward improvement-oriented
software environments“, IEEE Transactions on Software Engineering, 14:6, p.759-773, 1988.

(Basili and Weiss, 1984) Basili V.R. and Weiss D. M. A methodology for Collecting Valid Software
Engineering Data, IEEE Transactions on Software Engineering, 10(6):728-738, Nov. 1984.

(Basili et al., 1995) V. Basili, M. Zelkowitz, F. McGarry J. Page, S. Waligora, and R. Pajerski. SEL's software
process improvement program. IEEE Softw., 12(6):83-87, 1995.

(Boehm et al., 1973) B.W. Boehm, J.R. Brown, H. Kaspar, M. Lipow, G.J. MacLeod, and M.J. Merritt.
Characteristics of Software Quality. TRW Software Series TRW-SS-73-09. December, 1973.

(Boehm et al., 1976) B. W. Boehm, J.R. Brown, and M. Lipow. Quantitative evaluation of software quality. In
Proceedings of the 2nd International Conference on Software Engineering (ICSE) 1976, pages
592-605, 1976.

(Boehm et al., 1978) Barry W. Boehm, John R. Brown, Hans Kaspar, Myron Lipow, Gordon J. MacLeod, and
Michael J. Merritt, Characteristics of Software Quality. North Holland Publishing Company,
1978.

(Bøegh et al., 1999) Jørgen Bøegh, Stefano Depanfilis, Barbara Kitchenham, and Alberto Pasquini. A
method for software quality planning, control, and evaluation, IEEE Software, March/April:69-77,
1999.

(Briand et al., 1997) Lionel C. Briand, Christiane Differding, and H. Dieter Rombach, Practical Guidelines for
Measurement-Based Process Improvement, Software Process Improvement and Practice
Journal, vol. 2, no. 3, 1997.

(McCall et al., 1977) J.A.McCall, P.K.Richards, G.F.Walters, "Factors in Software Quality", RADC TR-77-
369, 1977. Vols I,II,III', US Rome Air Development Center Reports NTIS AD/A-049 014, 015,
055, 1977.

 Copyright QUALOSS Consortium

54

Measurement Requirements Specifications

Deliverable ID: D1.2

Page : 55 of 88

Version: 1.3
Date: Mar 15, 07

Status : Proposal
Confid : Restricted

(DGQ, 1986) Deutsche Gesellschaft für Qualität, Software-Qualitätssicherung. No. DGQ-NTG-Schrift 12-51,
VDE-Verlag Berlin, 1986.

(Duijnhouwer and Widdows, 2003) F. Duijnhouwer, C. Widdows: Open Source Maturity Model, Capgemini
Expert Letter, August 2003

(Freimut et al., 2003) Freimut, Bernd; Assmann, Danilo; Kaiser, Peter; Trendowicz, Adam; Wieczorek,
Isabella: Quality Models to Manage Software Development - A State of the Art Report, IESE-
Report, 035.03/E , 2003

(Fenton and Pfleeger, 1996) Norman E. Fenton and Shari Lawrence Pfleeger, Software Met-rics - A Practical
and Rigorous Approach. International Thomson Computer Press, 2nd edition ed., 1996

(Golden, 2005) B. Golden: Making Open Source Ready for the Enterprise: The Open Source Maturity Model,
Navica White Paper, www.navicasoft.com, extracted from B. Golden: “Succeeding with Open
Source”, Addison-Wesley, 2005

(Grady and Caswell, 1987) Robert B. Grady and Deborah L. Caswell, Software Metrics: Establishing a
Company-Wide Program, Prentice-Hall, 1987

(Grady, 1992) Robert B. Grady, Practical Software Metrics for Project Management and Process
Improvement. Prentice Hall, 1992

(Gresse et al., 1995) Gresse B., Hoisl B., Wüst J. A Process Model for GQM-Based Measurement, STTI-95-
04-E, Department of Computer Science, University of Kaiserslautern, Germany, 1995.

(Hartkopf et al., 2007) Susanne Hartkopf, Christian Denger, Ronny Kolb, Adam Trendowicz: State of the Art
in Quality Modeling for Reuse-Based Software Development in Small and Medium Sized
Enterprises, LifeCycleQM Report, 2007

(Hyatt and Rosenberg, 1996) Larry Hyatt and Linda Rosenberg, A software quality model and metrics for risk
assessment, in Proceedings of the ESA 1996 Product Assurance Symposium and Software
Product ASS, 1996.

(ISO 8402) ISO 8402, Quality management and Quality assurance Vocabulary

(ISO 9126) ISO/IEC 9126 International Standard, Software engineering – Product quality, Part 1: Quality
model, 2001.

(ISO 12207) ISO/IEC 12207: International Standard, Information technology -- Software life cycle processes,
1995

(ISO 14598) ISO/IEC 14598 International Standard, Standard for Information technology -- Software product
evaluation -- Part 1: General overview

(Kitchenham et al., 1997) Barbara Kitchenham, Steve Linkman, Alberto Pasquini, and Vincento Nanni, The
SQUID-Approach to Defining a Quality Model, Software Quality Journal, vol. 6, no. 3, pp. 211-
233, 1997.

(CNSS, 2006) Committee on National Security Systems (CNSS) Secretariat, National Security Agency:
National Information Assurance Glossary, CNSS Instruction No. 4009, June 2006

(OpenBRR, 2005) OpenBRR.org, Business Readiness Rating for Open Source: A Proposed Open Standard
to Facilitate Assessment and Adoption of Open Source Software , BRR 2005.
http://www.openbrr.org

 Copyright QUALOSS Consortium

55

Measurement Requirements Specifications

Deliverable ID: D1.2

Page : 56 of 88

Version: 1.3
Date: Mar 15, 07

Status : Proposal
Confid : Restricted

(Park et al., 1996) Park, R, W. Goethert, W. Florac, 1996. Goal-driven software measurement – a guidebook,
SEI report CMU/SEI-96-HB-002.

(QSOS, 2006) QSOS Project, Method for Qualification and Selection of Open Source software (QSOS),
version 1.6, April 2006. http://www.qsos.org

(van Solingen and Berghout, 1999) R. Van Solingen, E. Berghout, The Goal/Question/Metric Method, A
Practical Guide for Quality Improvement of Software Development, Mc Graw Hill, 1999

 Copyright QUALOSS Consortium

56

Measurement Requirements Specifications

Deliverable ID: D1.2

Page : 57 of 88

Version: 1.3
Date: Mar 15, 07

Status : Proposal
Confid : Restricted

APPENDIX A: USAGE SCENARIO INTERVIEW SHEET

INSTRUCTIONS

The goal of the interviews is to elicit usage scenarios for F/OSS components and associated evaluation
criteria. The results will be used to define goals for the QualOSS quality models.

The interview is mainly directed at organizations that are currently using F/OSS in any way. Candidates are
organizations using F/OSS as part of their information infrastructure, and organizations that are offering
F/OSS based products or services to the public, among others. Additionally, the interview can be also
conducted with organizations not currently using F/OSS, in order to determine their reasons not to use it.

Use the questions below as a base for conducting the interview. All questions are followed by an explanation
(in a box) that is intended to guide the interviewer. If the interviewee does not understand a term, the
interviewer can provide guidance by using some of the suggested hints and additional questions. Following
the explanation, there is also a sample answer (in cursive) which illustrates how the interviewee's answers
could be documented. Parenthesis are used to indicate variants of the questions that could be used with
organizations that are not using F/OSS.

This sheet is intended to be used by QualOSS members in in-house interviews.

ORGANIZATIONAL INFORMATION

Date of Interview

Start Time

Company Removed from the appendix for anonymization

Context / Domain

Interviewee Name Removed from the appendix for anonymization

Interviewee Position Removed from the appendix for anonymization

Interviewee contact (e.g., Email) Removed from the appendix for anonymization

INTERVIEW INTRODUCTION

Explain to interviewee: F/OSS components are growing in importance today. One critical question in
selecting F/OSS components is to find out whether they are good enough to be used in their goal context.
We are conducting this interview to find out how F/OSS components are selected and used in your company,
or, alternatively, why your company is not using them now.

INTERVIEW QUESTIONS

Q1: For which types of purposes/systems do you (would you) use F/OSS
products?

Example possible answers: server, desktop, (Internet) infrastructure, part of a commercial product, part
of an in-house application, etc.

 Copyright QUALOSS Consortium

57

Measurement Requirements Specifications

Deliverable ID: D1.2

Page : 58 of 88

Version: 1.3
Date: Mar 15, 07

Status : Proposal
Confid : Restricted

It is important that the interviewee can come up with his/her own classification. This classification will
be used in all following questions to differentiate answers. That is, for all following questions, ask for
differences between types.

When documenting the interview results, use a separate document for each type. For example, if they
use (or would use) F/OSS for server and desktop computers, create one document that summarizes
the answers for server, and another one that summarizes the answers for desktop computers

We have a public website (http://wwwagse.informatik.uni-kl.de) which is used to provide general
information about our group (mainly to students) and to hold special web pages for the lectures and
seminars we offer. A small intranet is also available for sharing information between our group's
members and storing internal documents.

Both of these are based on OSS infrastructure.

Q2: Which F/OSS products do you use? (Have you considered any
concrete products you would use?)

In case too many different products are used, the interviewee try to find at least some examples for
each category.

For example, if the interviewee stated that they use F/OSS products for server and for desktop
purposes, the question here can be something like: “You stated that you use F/OSS products for
server and for desktop purposes. Can you give examples of products you use on the server? Can you
give examples of products you use on desktop computers?” This is also applicable to products the
interviewee's organization has only considered but do not use yet.

Try to cover all categories mentioned by the interviewee for the following questions, too.

If the interviewee's organization is not currently using F/OSS software, skip to question 6.

Zope and a number of Zope products (add-ons).

Q3: How do you use F/OSS products?

Find out in which ways F/OSS products are being used in the interviewee's organization.

This question can contain many other subquestions: Do you make modifications to the F/OSS
components? Do you integrate them by writing glue code? Do you use a F/OSS library? Do you port
F/OSS component to a new platform? ...

We use Zope as our main web server, extended with a number of OSS extension packages. We also
wrote a number of scripts that do particular tasks, like creating a news bar at the main page, and
tabulating the contact information for our group's members. Additionally, we created a Zope product that
we use to support the workflow in some of our courses.

Q4: Why did you choose these F/OSS components?

Determine why this product was chosen against other possible F/OSS or commercial offers.

 Copyright QUALOSS Consortium

58

Measurement Requirements Specifications

Deliverable ID: D1.2

Page : 59 of 88

Version: 1.3
Date: Mar 15, 07

Status : Proposal
Confid : Restricted

We needed a flexible system that would not require us to centralize the administration of our web server.
This is possible with Zope. For example, at this time, when a group member is responsible for a lecture,
it is possible for him to directly create and update the corresponding web pages without the risk of
disrupting the rest of the server.

It was also convenient that Zope was freely available and had a large number of available extensions.
The fact that I had previous experience with Zope also played a role in the decision.

Q5: To your knowledge, do you achieve business goals through F/OSS
usage?

Determine what the interviewee and/or his organization want to achieve by using F/OSS components,
and whether this is directly aligned with any organizational business goals. In a broad sense, we
understand business goals as those related to the success and profitability of an organization.

Since we belong to a public institution, we cannot strictly speak of business goals in our case. On the
other hand, it is our goal to present our students with a good academic offer, and a well-organized, up-
to-date web site is part of that. Arguably, our students are now better informed about our academic offer.
We can also better support our lectures and seminars by making it easy for teachers and assistant to
quickly publish information.

Q6: What are criteria that F/OSS components need to fulfill to be
appropriate?

Identify the interviewee's quality expectations toward F/OSS components. Example possible answers:
high quality product, low development effort, access to source code and possibility to implement
required functionality, ...

When we started with Zope we expected it to be reliable and flexible, and it has fulfilled both
expectations good enough for our purposes. We also had expectations regarding support. Since we
didn't have a large budget for the web site, it was important to have a minimum of support from the
Internet (mailing lists, fora, etc). This has worked well up to now. Actually, you find most solutions by
searching the Internet. Directly asking in mailing lists, for example, hasn't been necessary.

Q7: How did you (would you) evaluate these criteria?

The question before asks what the interviewee wants to know about F/OSS components. This question
addresses what they do to find out whether the component satisfies their criteria.

The only way we had to evaluate these criteria was by looking at what other people had to say about the
product. Searching the Internet quickly showed us a large number of apparently satisfied users. Looking
at Zope's web pages and mailing list were also signs of an active community.

Q8: Did you (would you) consider any criteria related to Robustness and
Evolvability?

We should explicitly ask for these, as they are in the focus of QualOSS. If some robustness/evolvability
criteria have been mentioned before, these can be used to help to guide the rest of the interview.

 Copyright QUALOSS Consortium

59

Measurement Requirements Specifications

Deliverable ID: D1.2

Page : 60 of 88

Version: 1.3
Date: Mar 15, 07

Status : Proposal
Confid : Restricted

If the interviewee's organization is not currently using F/OSS software, skip to question 11.

Q9: How did you evaluate this criterion?

Repeat this question for each criterion mentioned by the interviewee.

Usability: We looked at mailing lists to determine user satisfaction

Support: Look at activity in mailing lists

Q10: If not evaluated: Why did you not evaluate the criterion?

Reliability: We did not know how to test the product for reliability

Q11: How important is this criterion to you?

Rate on the following scale of 0 to 10, where 0 means that the criterion is irrelevant, and 10 means that
a high quality level with respect to this criterion is critical for selecting the F/OSS component.

Usability: 8 (We have to give the product to untrained users, usability is fairly critical.)

Support: 10 (If we have questions, they need to be answered really quickly, because this usually
means that our sales process could be stopped until the question is resolved)

Reliability: 7 (...)

 Copyright QUALOSS Consortium

60

Measurement Requirements Specifications

Deliverable ID: D1.2

Page : 61 of 88

Version: 1.3
Date: Mar 15, 07

Status : Proposal
Confid : Restricted

APPENDIX B: INTERVIEW RESULTS

INTERVIEW 1

Organizational Information

Date of Interview 07/11/06

Interviewer MERIT

Start Time 12:00

Context / Domain All services around open source.
From developers to advice, support, training,
network services.

Interview Questions

Q1: For which types of purposes/systems do you use F/OSS products?

Time:03:11

We try to use open source as much as we can when we find provisional solutions. We use it for almost
all the communication solutions except application which are “ too specific”, for example accounting,
some for production units. For these applications it is difficult, but for the rest on mailing, on security, on
file server, on lot of domains of inter-enterprise communication.

The other part where we go slowly is the user desktops. We make some migration for this, and we use
desktop but it is in particular cases when we know it will work.

Q2: Which F/OSS products do you use?

Time: 05:00

For mail we use Cyrus IMAP, Postfix. We use a lot of webmail with like IMP Horde, we use the network
part of Linux for security for e.g. IP-Tables, we use Samba for the file server and printing server, we use
Sympa for mailing lists. We use a lot Apache with PHP, and MySQL and PostSQL. Tomcat for Java
applications.

Q3: How do you use F/OSS products?

Q4: Why did you choose these F/OSS components?

Time: 06:38

Some of them are at level of proprietary solutions, sometimes they are better. For the high load, they
work sometimes better. In our case, we will specialize in open source, so we sometimes we do not know
enough proprietary solutions, so we are more efficient with open source.

 Copyright QUALOSS Consortium

61

Measurement Requirements Specifications

Deliverable ID: D1.2

Page : 62 of 88

Version: 1.3
Date: Mar 15, 07

Status : Proposal
Confid : Restricted

Q5: To your knowledge, do you achieve business goals through OSS
usage?

Time: 07:35

Our goal is to propose services around open source for our clients. We are a company in computing
services, so it follows naturally that open source helps us reach the business goals.

Q6: What are criteria that F/OSS components need to fulfill to be
appropriate?

Time: 08:23

Reliability, performance and usability.

We choose solutions which are the most commonly used, because sometimes we have a choice, and
for our clients we do not use a solution that is too young. In our case we can try things, but for our clients
we need to give them reliable solutions.

Q7: How did you evaluate these criteria?

Time: 09:18

--what do you mean with “too young” exactly and what is “reliable” exactly?

That is difficult. We have been in the domain and area for 10 years, and we have experts in our
company, and we know on which solution we can rely on. We try to grade a community/evaluate it w.r.t.
If it is dynamic, we need a number of projects known in big companies, we spend a lot of time to check
this criteria. In fact we have the same results in consulting our experts without having to do a lot of
research on it.

Q8: Did you consider any criteria related to Robustness and Evolvability?

Time: 10:50

It is important, how they evaluate them.

We control if community is dynamic and to see if it will go on further, and if the solution will be
maintained over time.

-->what is dynamic and how do you decide?

You have to see how big is the community, with firms in it. How fast they respond to bugs and questions
on the forums, which frequency new versions are released with new bug fixes and new versions.

I think for evolvability and robustness it is quite the same.

Q9: How did you evaluate this criterion?

--

Q10: If not evaluated: Why did you not evaluate the criterion?

 Copyright QUALOSS Consortium

62

Measurement Requirements Specifications

Deliverable ID: D1.2

Page : 63 of 88

Version: 1.3
Date: Mar 15, 07

Status : Proposal
Confid : Restricted

Q11: How important is this criterion to you?

Time: 12:34

It depends on the clients. Sometimes we need all points.

--> We followed ISO/IEC 9126/1 list as URJC did, to grade this and give reason to get some more real
answers.

Maturity: 7 – We have to be sure the solution will be sufficiently tested and used, and that it will not
change into something totally different in next release.

Fault tolerance: 5 – For our clients is not each time important. Sometimes we have to build something
aroudn one solution to make it fault tolerant with other OSS components, but sometimes the solution
itself is not fault tolerant, but we make it tolerant.

Maintainability: 7 – usually in OSS solutions it is often documented for big projects, it is easier to
maintain. It is important, but almost all solutions we use have this criteria.

Analyzability: ? 5 - To maintain we have to know the code, and we have to analyze it to maintain, and to
check security, to check features. But only 5 because we when we know the solution well, and we know
what we can do and where it can go.

Changeability: You mean if it is to change to another solution? 4 – it often it is not question of our client.
We think these solutions are more, .. the risk is less important with open source solutions than
proprietary solutions that something like apache needs to change because it has been open up. And for
changing things ourselves – 7 in importance to configure and meet requirements of clients. We rarely
use out of the box solutions.

Stability: 10 – very important, because when the client chose OSS instead of propiratry solution we have
to do at least as well on stability as proprietary solution. So we propose support for client every day to
make sure it is stabile. Very important factor.

Testability: Every application must be tested, but often of course you can test it and check if it works. 7 –
but we can do it.

Adaptability: It really depends on solution. Sometimes we need to do big adaptations it is very important,
for others (e.g. Fileserver), we do not have to do so much so it is less important. Other times it is so
complicated or big application like samba we do not adapt it so much. But maybe for e.g. Squid proxy
we have to change some features, so in this case it must be easy to use modules or to be able to
change it. So it depends. It can go from 5-9.

Installability: Easy to install? We know that for some solution we have to spend a lot of time to install
configuration, and it is not a problem because for it is a very complicated or specific use. So we know
some products cannot be used out of box directly, because it is complicated, and we need to
communicate with windows systems and others. So, it has to be documented to install it, but all of them
have it to be used. But, from 5-8. But, it is not the principal part for us.

Coexistence: ? What does it mean? Really important, almost all OSS can coexist on same server, it is a
9, but almost all of them do.

Replacability: Easy to replace with another? Not important, a 4.

Safety: In terms of security? Very important. Sometimes it can be a bit different if solution is on Internet
or inside company, but in all cases it a 8-10.

 Copyright QUALOSS Consortium

63

Measurement Requirements Specifications

Deliverable ID: D1.2

Page : 64 of 88

Version: 1.3
Date: Mar 15, 07

Status : Proposal
Confid : Restricted

INTERVIEW 2

Organizational Information

Date of Interview 25 - october -2006

Interviewer URJC

Start Time 10.00 am

Context / Domain Open Source Integrator

Interview Questions

Q1: For which types of purposes/systems do you (would you) use F/OSS
products?

Merging functionalities in order to get complex capabilities

Q2: Which F/OSS products do you use? (Have you considered any
concrete products you would use?)

We have not considered the use of any concrete product. we use the "bests ones"

Q3: How do you use F/OSS products?

Usually, implementing and integration software layer to make the foss to cooperate with others.

Q4: Why did you choose these F/OSS components?

We can access the source and so we can modify and enhance it for our enterprise purposes

Q5: To your knowledge, do you achieve business goals through F/OSS
usage?

Yes. This is the main business area of our company. We define new products using several of FOSS
ones.

Q6: What are criteria that F/OSS components need to fulfill to be
appropriate?

Mainly: functionality, suitability, no beta versions, standards based, reliability, maturity and that it is not a
closed project.

Q7: How did you (would you) evaluate these criteria?

1st the public info is evaluated, then several "unit" tests will make so we can test the functionality as well
as the reliability.

 Copyright QUALOSS Consortium

64

Measurement Requirements Specifications

Deliverable ID: D1.2

Page : 65 of 88

Version: 1.3
Date: Mar 15, 07

Status : Proposal
Confid : Restricted

Q8: Did you (would you) consider any criteria related to Robustness and
Evolvability?

Yes, we look for no closed projects

Q9: How did you evaluate this criterion?

Reading the Roadmap (we believe it), previous timeline and for robustness usually code inspections

Q10: If not evaluated: Why did you not evaluate the criterion?

Q11: How important is this criterion to you?

functionality: 8, reliability: 9, standarized: 8

INTERVIEW 3

Organizational Information

Date of Interview October, 24th 2006

Interviewer FUNDP

Start Time 2.40 AM

Context / Domain IT enterprise. It promotes the use of IT in public
sector

Interview Questions

Q1: For which types of purposes/systems do you (would you) use F/OSS
products?

Answer:

We use OSS infrastructure in many cases:

• Servers in operating system like Linux
• Applications servers like APACHE, TOMCAT, JBOSS
• Tools for modelling
• Tools Integration framework to build web applications
• Web Content Managment Systems

Q2: Which F/OSS products do you use? (Have you considered any
concrete products you would use?)

Answer:

We use OSS products like Linux, GBOSS, TOMCAT, ECLIPSE, J2EE Container and persistence
libraries.

 Copyright QUALOSS Consortium

65

Measurement Requirements Specifications

Deliverable ID: D1.2

Page : 66 of 88

Version: 1.3
Date: Mar 15, 07

Status : Proposal
Confid : Restricted

Q3: How do you use F/OSS products?

Answer:

Most of time, we use OSS libraries. But when the OSS is well documented, legible and readable, we can
use it without modifications . Sometimes, we also write a number of scripts and add it to OSS to have
more functionalities. There are also many OSS without documentation and it is difficult to known the real
behavior of these OSS.

Q4: Why did you choose these F/OSS components?

Answer:

Generally, we have to follow our customers requirements and IT standards that includes the use of OSS.
They ask us to use OSS components whenever it is possible. In others cases, it is our initiative
particularly when we want:

• To reduce the cost of building applications
• To reuse code of OSS
• To be flexible and not to be attach to a particular constructor
• to benefit of a large community of users for support

Sometimes, it is because of the popularity of the OSS. Finally, OSS are freely available and we are
familiar with some of them.

Q5: To your knowledge, do you achieve business goals through F/OSS
usage?

Answer:

It depends. We don't use OSS for databases, workflow systems or Business Intelligence systems
because they have not yet reach the minimal requirements level. Apart from that we do achieve our
business goals with OSS.

Q6: What are criteria that F/OSS components need to fulfill to be
appropriate?

Answer:

To be appropriate, an OSS components need to be :

• Mature
• Popular
• Known as belonging to a group with some specific standardization criteria (for example Jakarta,

Apache,)
• In case we want to modify code, the OSS components need to be legible and readable, well

documented, well structured and to have a strong and coherent architecture.

Q7: How did you (would you) evaluate these criteria?

Answer:

 Copyright QUALOSS Consortium

66

Measurement Requirements Specifications

Deliverable ID: D1.2

Page : 67 of 88

Version: 1.3
Date: Mar 15, 07

Status : Proposal
Confid : Restricted

If possible, we can evaluate it by using some scientific methods (metrics, ...) but it is costly. We evaluate
them in a specific project or have some information from Internet. It could be:

• The maturity : for how many long the project exists?
• The support (documentation, architecture, ...)
• The team working on the project: there are known people in OSS community who have good

reputation.
• The views of the OSS community on the OSS
• Users opinions on these OSS (Forum, ...).

Q8: Did you (would you) consider any criteria related to Robustness and
Evolvability?

Answer:

For Robustness, some criteria could be:

• Maturity (life cycle, tests' results, ...);
• The way the product is realized (with standard norms, ...);
• Well documented (Wiki, Forum, ...).

For evolvability, some criteria could be:

• The use of recognize standard to realize the product;
• Application should resolve a general problem and not to be too specific;
• Well documented (Wiki, Forum, ...)

Q9: How did you evaluate this criterion?

Answer:

We can evaluate it when it is possible with scientific methods but in general we obtain informations from
the net.

• The maturity : for how many long the project exists?, the opinions of users of this OSS (Forum, ...),
the views of the OSS community on the OSS;

• Well documented : search on Internet (Wiki, Forum, mailing list ...);
• The way the product is realized or the use of recognize standard to realize the product the team

working on the project: the team working on the project (there are known people in OSS community
who have good reputation), the views of the OSS community on the OSS, users opinions on these
OSS (Forum, ...).

Q10: If not evaluated: Why did you not evaluate the criterion?

Answer:

In some case, it's costly to evaluate some criteria.

Q11: How important is this criterion to you?

Answer:

• The maturity : 8
• Support (documentation, ...): 8

 Copyright QUALOSS Consortium

67

Measurement Requirements Specifications

Deliverable ID: D1.2

Page : 68 of 88

Version: 1.3
Date: Mar 15, 07

Status : Proposal
Confid : Restricted

• The way the product is realized or the use of recognize standard to realize the product: 8
• Robustness: 8
• Evolvability: 8

INTERVIEW 4

Organizational Information

Date of Interview 3/11/2006

Interviewer CETIC

Start Time

Context / Domain OS e-business integrator

Interview Questions

Q1: For which types of purposes/systems do you (would you) use F/OSS
products?

The company specialized in OPEN SOURCE solutions, and we also use (quasi exclusively ;) F/OSS
products ‘in house’.

a) We use F/OSS products mainly to ‘build’ solutions for our customers (integrator) in the e-business
domain.

b) We also use F/OSS libraries, components or servers for development of software or service for our
customers.

C) And eventually F/OSS servers and Internet infrastructure for our deployment.

Q2: Which F/OSS products do you use? (Have you considered any
concrete products you would use?)

a) for example: OS CMS products (Joomla, Drupal, Typo3, Jahia, …), OS e-commerce products (OS
Commerce), OS reporting (JasperReports),…

b) Ex: feed manipulation libraries for Podcast management software, Asterisk server for services (Web
Telephony Integration),…

c) Linux servers with LAMP or OS J2EE environment + infrastructure management tools (Nagios,

SubVersion server, OpenSSH client,…)

Q3: How do you use F/OSS products?

a) Integration + some modules dev. (sometimes core code modification but can be avoid for products
with good architecture).

b) Integration with glue code + use of F/OSS libraries.

c) Use without modification, a set of servers that respond to our needs in term of infrastructure.

 Copyright QUALOSS Consortium

68

Measurement Requirements Specifications

Deliverable ID: D1.2

Page : 69 of 88

Version: 1.3
Date: Mar 15, 07

Status : Proposal
Confid : Restricted

Q4: Why did you choose these F/OSS components?

Our company has choose to deliver OS solution because they have thefollowing advantages over
commercial solutions:

-access to source code (tailor made solution, adaptability)
-perenniality of the product (not dependent on a commercial company)
-licence cost
-… to be completed…

Q5: To your knowledge, do you achieve business goals through F/OSS
usage?

Since we belong to a public institution, we cannot strictly speak of business goals in our case. On the
other hand, it is our goal to present our students with a good academic offer, and a well-organized, up-
to-date web site is part of that. Arguably, our students are now better informed about our academic offer.
We can also better support our lectures and seminars by making it easy for teachers and assistant to
quickly publish information.

a) and b) YES, we succeed in a long series of projects based on OS products or components (see our
website, in the ‘reference’ or ‘case studies’ section). We deliver ‘tailormade’ solution to our customers,
solutions that fit their organizational needs; and they appreciate it!

Q6: What are criteria that F/OSS components need to fulfill to be
appropriate?

Access to source code is mandatory due to our business (OSintegration).

a) criteria: –programming languages: PHP or JAVA -reliability -good references -documentation
available (user, developer + comments in source code) -architecture of the software (modularity,
evolutivity) -large community with recent activity -list of modules available and quality of these modules
-quality of coding -support (for some projects)

b) idem a)

c)-References and notoriety-very stable products

Q7: How did you (would you) evaluate these criteria?

-reliability: discussion with other developers, Bug list (and resolution), forum discussions, past
experience, reputation of the company who support the project, internal evaluation (tests…),

-good references: list of references + link on the official project website or in the community website.

-documentation available: browsing of the documentation

-architecture of the software (modularity, evolutivity): analysis of the architecture of the software
(declared and real!)

-large community with recent activity: via OS projects statistics on websites like sourceforge.org,
freshmeat.net, RFC lists, …

-list of modules available and quality of these modules: development part of the website’s project +
forums,…

 Copyright QUALOSS Consortium

69

Measurement Requirements Specifications

Deliverable ID: D1.2

Page : 70 of 88

Version: 1.3
Date: Mar 15, 07

Status : Proposal
Confid : Restricted

-quality of coding: direct inspection of source code

-support: type of contract support (respond time, pricing, part covered,…)

Q8: Did you (would you) consider any criteria related to Robustness and
Evolvability?

YES.

Q9: How did you evaluate this criterion?

Usability: We looked at mailing lists to determine user satisfaction

Support: Look at activity in mailing lists

Robustness : see ‘reliability’, ‘architecture’, ‘good reference’ and ‘quality of coding’ in Q7

Evolvability: see ‘architecture’, ‘list of modules’ (numbers of recent modules and roadmaps) and
‘community’ in Q7

Q10: (see Q7) If not evaluated: Why did you not evaluate the criterion?

Reliability: We did not know how to test the product for reliability

Q11: QHow important is this criterion to you?

Rate on the following scale of 0 to 10, where 0 means that the criterion is irrelevant, and 10 means that
a high quality level with respect to this criterion is critical for selecting the F/OSS component.

Usability: 8 (We have to give the product to untrained users, usability is fairly critical.)

Support: 10 (If we have questions, they need to be answered really quickly, because this usually means
that our sales process could be stopped until the question is resolved)

Reliability: 7 (...)

It also depends partly on our clients priority! (as integrator). For example:

-for PE : support and robustness very important; large community not very important and J2EE based
CMS => “Jahia CMS” -for RadioAmateurs : support and usability not very important; reliability, use of
PHP and large Belgian community important => “Drupal CMS” -for ABCSoft : ecommerce product (with
online payment => critical) with a lot of customization => references, reliability, list of modules available
that respond to their needs and access to source code = important!! Quality of coding, documentation,
architecture = not so important • “OS Commerce”

INTERVIEW 5

Organizational Information

Date of Interview November, the 16th 2006

Interviewer FUNDP

 Copyright QUALOSS Consortium

70

Measurement Requirements Specifications

Deliverable ID: D1.2

Page : 71 of 88

Version: 1.3
Date: Mar 15, 07

Status : Proposal
Confid : Restricted

Start Time 2.10 PM

Context / Domain A public entity responsible for e-government in
Walloon region. It promotes the use of OSS in
public sector

Interview Questions

Q1: For which types of purposes/systems do you (would you) use F/OSS
products?

Answer:

We use OSS software in many cases:

• Servers in operating system like Linux (mail, directory LDAP, sharing repository (Samba));
• Applications servers like APACHE, TOMCAT, MySQL, PHP,Linux, Python;
• Office applications like Open Office 2.0, Mozilla Firefox and Thunderbird;
• Tools Integration framework to build web applications like MediaWiki;
• Web Content Management Systems like SPIP;
• Management of projects like phprojekt;

Q2: Which F/OSS products do you use? (Have you considered any
concrete products you would use?)

Answer:

We use OSS products like Linux, APACHE, TOMCAT, MySQL, Mozilla Firefox, Mozilla Thunderbird,
MediaWiki, SPIP, phprojekt, Python, OpenOffice.

Q3: How do you use F/OSS products?

Answer:

We use the OSS software like a commercial software. We use the product itself and sometimes, we
modify some source code to adapt it with our needs. It was the case with phprojekt and SPIP. We also
use libraries like python's libraries.

Q4: Why did you choose these F/OSS components?

Answer:

We choose to use F/OSS components for several reasons:

• To reduce cost;
• To promote the philosophy of OSS community
• To show and promote the use of OSS software in public enterprise
• There are many OSS software of good quality,. It is the case of Linux Sever for example (In one

year, we stop our Linux Server for 2 min), APACHE
• To reuse source code of OSS

 Copyright QUALOSS Consortium

71

Measurement Requirements Specifications

Deliverable ID: D1.2

Page : 72 of 88

Version: 1.3
Date: Mar 15, 07

Status : Proposal
Confid : Restricted

• For OSS stability
• Linux Server is the most robust server

Q5: To your knowledge, do you achieve business goals through F/OSS
usage?

Answer:

Yes, we are very satisfied with OSS. They are very easy to use and free. The only problem we have is
to exchange OpenOffice's format (.odf) into Word (.doc). Apart from that we do achieve our business
goals with OSS.

We are working now on Belgif (the Belgian interoperability project) and we will promote the use of ODF
(Open Document Format) in the Walloon Region.

Q6: What are criteria that F/OSS components need to fulfill to be
appropriate?

Answer:

To be appropriate, OSS components need to be:

• available (source code, documentation, ..)
• Known as belonging to a group with an history (Version available, how do these version evolve ...).

We refer to Sourceforge and other website for the history of some OSS.
• Popular (have an active community that contribute to the life of the software)
• Simply like MediaWiki
• In case we want to modify code, the OSS components need to be legible and readable, well

documented, well structured and to have a strong and coherent architecture.

Q7: How did you (would you) evaluate these criteria?

Answer:

We evaluate them in specific projects or through some information from Internet. It could be:

• The number of users of the OSS product in the community : are they active users ?
• The support (documentation, architecture, ...)
• Finding comparatives studies like CMS
• The views of the OSS community on the OSS product, his history
• The comparisons of functionalities : estimations of how well the OSS product fit our needs.

Q8: Did you (would you) consider any criteria related to Robustness and
Evolvability?

Answer:

For Robustness, some criteria would be:

• Maturity (life cycle, tests' results, ...);
• Powerfulness and stability of the product or the stack of software like LAMP (Linux-Apache-MySQL-

PHP);

 Copyright QUALOSS Consortium

72

Measurement Requirements Specifications

Deliverable ID: D1.2

Page : 73 of 88

Version: 1.3
Date: Mar 15, 07

Status : Proposal
Confid : Restricted

• Scalability
• The way the software could recover data after a problem

For evolvability, some criteria would be:

• The use of recognize standard to realize the product;
• The time taken to integrate a new technology;
• The structure of product's components (modularity);
• The history of the product;
• Documentation (Wiki, Forum, ...) ;

Q9: How did you evaluate this criterion?

Answer:

In many cases, we get the reputation of the product from Internet (the community working on, the story,
the number of versions, his architecture, the views of OSS community, documentation, ...).

We can also ask a private enterprise to carry on comparative studies about functionalities of different
OSS products and we choose the one that fits better our need.

Q10: If not evaluated: Why did you not evaluate the criterion?

Answer:

 Can not apply in our case.

Q11: How important is this criterion to you?

Answer:

• Robustness : 9
• Maturity (life cycle, tests' results, ...): 7
• Powerfulness and stability of the product or the software like LAMP (Linux-Apache-MySQL-PHP) :

9
• Scalability : 8
• The way the software could recover data after a problem : 6
• Evolvability : 8
• The time needed to integrate a new technology : 7
• The use of recognized standard to realize the product: 10
• The structure of the product's components are (architecture of the system) : 9
• The history of the product : 6
• Documentation (Wiki, Forum, ...) : 9

INTERVIEW 6

Organizational Information

Date of Interview 30/10/2006

Interviewer URJC

Start Time 17:00

Context / Domain OSS Business model

 Copyright QUALOSS Consortium

73

Measurement Requirements Specifications

Deliverable ID: D1.2

Page : 74 of 88

Version: 1.3
Date: Mar 15, 07

Status : Proposal
Confid : Restricted

Interview Questions

Q1: For which types of purposes/systems do you (would you) use F/OSS
products?

The company uses open source software (OSS) for different purposes. Their basic goal is to
develop software. The company understands OSS as a philosophy, so they think in OSS as
a business model.

OSS as a philosophy, so they apply this philosophy. The company has a community and they work as
another developer. The company has contributed in different OSS they think
are interested in. Their business model is based in a strategical point of view. work only with open
communities and open software projects. They participate and contribute in OSS and the
OSS community obtains advantages and The company as well.

In this moment we can consider different OSS infrastructure The company uses. Desktop, server, public
website, community public website innovation

Q2: Which F/OSS products do you use? (Have you considered any
concrete products you would use?)

The main requirement they need to use software is that it has to have an important community behind it.

We have to differ between applications.

Server: Ubuntu and Debian.

Desktop: Ubuntu with GNOME.

Public website: In this moment they have migrated to typo3. Some months ago they used EzPublish.

Internal development: Jhbuild, Tutos, Tinderbox.

Other: developer environment, etc.

Q3: How do you use F/OSS products?

--> QualOSS Usage Scenarios

Q4: Why did you choose these F/OSS components?

They don't have specific requirements choosing software applications. The Company only
wants software to be OSS and they don't like double license.

Some examples are GNOME versus KDE, Qt versus Typo3, etc.

KDE has, in some components, double license, so The Company can not access to the core of KDE. It
is the same problem with Qt and Typo3. Qt has double license, so The
Company can not develop Qt core.

It is also convenient that all OSS components we have talked about have an
important community behind them.

 Copyright QUALOSS Consortium

74

Measurement Requirements Specifications

Deliverable ID: D1.2

Page : 75 of 88

Version: 1.3
Date: Mar 15, 07

Status : Proposal
Confid : Restricted

The Company doesn't like OSS which community is not active. Sometimes for strategic purpose they
have to develop some software from OSS projects without a big community behind them.

In some cases they have to choose another specific software due to requirements. Some clients need
different software.

Q5: To your knowledge, do you achieve business goals through F/OSS
usage?

Their business model is based in OSS, so they need OSS to achieve business goals.

Q6: What are criteria that F/OSS components need to fulfill to be
appropriate?

That question is similar to question number four. As main criterion, The Company would like to work with
a really open community where they can develop software. They do not like double license, that
is an important aspect.

Q7: How did you (would you) evaluate these criteria?

When The Company has to choose between different, first at all, that application has to be OSS.
It is important other people thoughts about some products. We can underline the same said before. We
like a lot an active community behind the projects we develop.

Q8: Did you (would you) consider any criteria related to Robustness and
Evolvability?

It is important. If a product is not easily evolve or it is not robust probably we will need to develop it or
simply we will not choose it. It is necessary, but we prefer to work with software less robust with a
big community behind it.

Q9: How did you evaluate this criterion?

Q10: If not evaluated: Why did you not evaluate the criterion?

Q11: How important is this criterion to you?

In general they think different criteria are important, but the most important criteria is to have a
big and open community behind the project.

INTERVIEW 7

Organizational Information

Date of Interview 16.11.06

Interviewer IESE

 Copyright QUALOSS Consortium

75

Measurement Requirements Specifications

Deliverable ID: D1.2

Page : 76 of 88

Version: 1.3
Date: Mar 15, 07

Status : Proposal
Confid : Restricted

Start Time 11:00

Context / Domain E-Business

Interview Questions

Q1: For which types of purposes/systems do you (would you) use F/OSS
products?

The company does not produce products, but provides (web-based) information services on stock
exchange data.

--> Offering http-based services; basically using Linux, TomCat, and Spring-Applications

We use OS products to provide services

A second area of the company is concerned with products (basically, clients for the stock exchange
data). OS does not play a role there, except for usage in the infrastructure. The reason is that they
program in Delphi; OS Licence issues are not a problem

Q2: Which F/OSS products do you use? (Have you considered any
concrete products you would use?)

Server/Plattform: To support the build prozess (Cruisecontrol), Apache, Subversion, Maiven (can
generate Ant-Scripts)

MySQL, Linux (other types of operating systems, too);

Server: VRRPD (summarizes/maps several physical computers to a virtual address); Messaging-System
(JMS-Server; Active MQ)

sometimes use of libraries; spring (www.springframework.org) (alternative to EJB), Logging

(Java-libraries)

The Wiki system we use is commercial. Reason: It is better in terms of functionality (rights management,
PDF export, messaging), Look&Feel is better, and it was not too expensive

(Professional) Service/Support was not a reason to choose the commercial system.

Q3: How do you use F/OSS products?

see above

Q4: Why did you choose these F/OSS components?

selection of the systems: hearsay, experienced people watch newsletters an commjunications. Some
information comes from e.g. Java-Magazines, but this is minor. Most important is to participate in and
watch the OS community.

 Copyright QUALOSS Consortium

76

http://www.springframework.org/

Measurement Requirements Specifications

Deliverable ID: D1.2

Page : 77 of 88

Version: 1.3
Date: Mar 15, 07

Status : Proposal
Confid : Restricted

Previously, we had a tendency to program ourselves without looking for available systems. Today, we
rather use what is there, in particular, since this means that we typically do not have to maintain and
evolve it ourselves.

Evolvability is of moderate importance – the system has to be good already

Q5: To your knowledge, do you achieve business goals through F/OSS
usage?

Time to market

Amount of services

Business figures (revenue)

Q6: What are criteria that F/OSS components need to fulfill to be
appropriate?

The method is that we try it out and look at it in detail, including code.

--> [4-5] Readability/Analyzability: This is important, as we have to be able to read the code to evaluate
it. In addition, readability can give trust into the reliability of the system

for example, we found a performance problem in our messaging system once. We had to debug the OS
code and understand it to be able to find and correct the defect. It turned out to be correct
parametrization of an OS component.

Documentation is important for readabiity

We have one programmer who evaluates candidate systems in detail

[9] Functionality: The product has to be suitable for the purpose. If the product evolves and gets better,
fine, but this is not important

[7] Maintainability: Important, but not a major concern; we rarely have to correct defects in OS products.
Sometimes, we patch systems, remove bugs, or implement features, but this is rare. The idea is to use
products “out of the box” as much as possible. For understandability, the structure, dependencies, etc.
are important.

Reliability: We have an own testing environment for our system. We try the OS product, and observe
whether it has a negative influence on our software.

[10] Stability is the most important criterium; our systems have to be stable or we are quickly out of
business

Q7: How did you (would you) evaluate these criteria?

See above

Q8: Did you (would you) consider any criteria related to Robustness and
Evolvability?

 Copyright QUALOSS Consortium

77

Measurement Requirements Specifications

Deliverable ID: D1.2

Page : 78 of 88

Version: 1.3
Date: Mar 15, 07

Status : Proposal
Confid : Restricted

Q9: How did you evaluate this criterion?

See above

Q10: If not evaluated: Why did you not evaluate the criterion?

N/a

Q11: How important is this criterion to you?

See above

INTERVIEW 8

Organizational Information

Date of Interview 27 October 2006

Interviewer CETIC

Start Time- End Time: 10:10AM ─ 12:45PM

Context / Domain City Administration Management

Interview Questions

Q1: For which types of purposes/systems do you (would you) use F/OSS
products?

Both of these are based on OSS infrastructure.

Answer from interviewee:

● Migrating servers from Unix SCO to Linux.

● Clients are currently Microsoft Windows but they all connect to the servers through the

Metaframe to execute server side code. It is plan that client migration to Linux will be done at the
end of 2007.

● Informix 4GL is used for the client GUI. It is now open source although we used it before it was

open sourced.

● Since we have started a migration towards F/OSS with the integration of Zope and Plone for our

workflow application, it is now much easier to migrate to other F/OSS products. We plan on
migrating everything to F/OSS components one step at a time. This migration is actually
possible because our expertise increase has we started to integrate our F/OSS components.

● Currently, we use MS Office and Outlook for mail but we plan on migrating to OpenOffice and a

F/OSS mail client.

● Currently the DB server is still proprietary (from Informix) but we are currently but slowly

migrating to Postgres.

 Copyright QUALOSS Consortium

78

Measurement Requirements Specifications

Deliverable ID: D1.2

Page : 79 of 88

Version: 1.3
Date: Mar 15, 07

Status : Proposal
Confid : Restricted

● We will also try through an exchange of expertise to include Asterisk (a VoIP service) in our

website (the City's website) so that citizen can connect to the Administration via a Soft-phone on
their computer.

Q2: Which F/OSS products do you use? (Have you considered any
concrete products you would use?)

Zope and a number of Zope products (add-ons).

Answer

● Zope, Plone and some new modules that we have developed on the top of Plone for the

Administrative Workflow of the City Council activities such as booking meeting rooms, holding
the Minutes of City Council meeting. Our code is also under a GPL and we are involved in
CommunesPlone so others can start using and incrementing our code

● Apache is our webserver (we are not using the webserver from Zope but instead bypass it to go

to Apache)

● Linux on servers (some servers are still Unix SCO but in three months they'll all be Linux)

● The compiler for Informix-4GL is now open source

● Postgres for DB server

● Asteriskwill be integrated

Q3: How do you use F/OSS products?

We use Zope as our main web server, extended with a number of OSS extension packages. We also
wrote a number of scripts that do particular tasks, like creating a news bar at the main page, and
tabulating the contact information for our group's members. Additionally, we created a Zope product that
we use to support the workflow in some of our courses.

Answer

● Apache as our webserver

● Zope/Plone for the workflow segment of the application

● We have committers (write) rights for some core Plone modules

● We develop modules on the top of Plone for Admnistrative Workflow and for the web interface.

We have also open our code.

● Zope, Plone and some new modules that we have developed on the top of Plone for the

Administrative Workflow of the City Council activities such as booking meeting rooms, holding
the Minutes of City Council meeting. Our code is also under a GPL and we are involved in
CommunesPlone so others can start using and incrementing our code.

● Linux on servers

● In the next year, Asterix, OpenOffice and Linux on desktop

 Copyright QUALOSS Consortium

79

Measurement Requirements Specifications

Deliverable ID: D1.2

Page : 80 of 88

Version: 1.3
Date: Mar 15, 07

Status : Proposal
Confid : Restricted

Q4: Why did you choose these F/OSS components?

We needed a flexible system that would not require us to centralize the administration of our web server.
This is possible with Zope. For example, at this time, when a group member is responsible for a lecture,
it is possible for him to directly create and update the corresponding web pages without the risk of
disrupting the rest of the server.

It was also convenient that Zope was freely available and had a large number of available extensions.
The fact that I had previous experience with Zope also played a role in the decision.

Answer

● Actually prior to migrating to deciding Zope/Plone, Joel thought about integrating MS SharePoint

Server however after conducting a series of interoperability test during 1 and ½ year where he
integrated different workflow technology with the existing 200KLOC of Informix-4GL, the
interviewee realized that Zope/Plone was the best one not only in term of interoperability but
also because Python was a very clear language that enforces good programming practices.

● Migration to Linux was an easy choice since we already used Unix SCO.

● Other migrations to other F/OSS components has become possible because we have learned

from the Zope/Plone and Linux experience. And given that we started a move to F/OSS we want
to continue in that direction.

Q5: To your knowledge, do you achieve business goals through F/OSS
usage?

Answer

● Yes, it allowed us to reach the objectives. We open a bid in where we listed two objectives and

they were both reached.

● (1) To integrate the Plone workflow engine on the City's intranet.

● (2) For the consultant from BubbleNet to transfer his expertise on Zope/Plone but also on

development technique such as pair programming.

● This second objective guarranteed we would be able to take over future development effort

without the forced need for external consultancy.

● However, it is important to note that before the open bid, the interviewee had already selected

the platform Zope/Plone. He had developed the city's website with Plone and had done the
interoperability tests. All in all, he was very satisfied with Plone/Zope. Given he knew Plone, he
could interview the consultant (who answered the bid) and he was able to select the consultant
with the required level of knowledge (i.e., a real expert).

Q6: What are criteria that F/OSS components need to fulfill to be
appropriate?

Answer

● The F/OSS components must be able to inter-operate in our environment.

 Copyright QUALOSS Consortium

80

Measurement Requirements Specifications

Deliverable ID: D1.2

Page : 81 of 88

Version: 1.3
Date: Mar 15, 07

Status : Proposal
Confid : Restricted

● The community behind a F/OSS component must answer our question so we 'll gain expertise in

the F/OSS component

● I also was attracted by the clarity of Python code

● For the CMS, it was important that the technology chosen included a workflow components and

that it included an development environment so that we could do some Rapid Application
Development. Archetypes in Plone was exactly what I wanted. We can automate code
generation from our UML models. We use Poseidon to create the model and generated the
code thanks to Archtypes.

Q7: How did you (would you) evaluate these criteria?

Answer

● For the interoperability test, I actually built a cluster of Zope servers and I was able to make our

old Informi-4GL code interact with the Zope server and that Zope server could also exchange
info with a second Zope serve that distributed the Internet pages.

● Independent of a technology being F/OSS or proprietary, I have always interacted with

vendor/community who provided me with their technology. For example, even before Informix
open source 4GL, I went to see them so they could explain certain thing about their technology.
I have continued doing this for the open source product. In the case of Zope/Plone, I could
interact with the community and also with the privilege partners of ZEA Partners.

● I also looked for coherence in my evaluation of technologies to integrate in my environment. For

example to add a module to Zope, we simply need to call a function add with the new module.

Q8: Did you (would you) consider any criteria related to Robustness and
Evolvability?

Answer

● Yes, these two criteria

● The fact was that although I was not a Python programmer at first, the language it was very

clear that Python would lead to very clear programs hence these programs would be easier to
modify later on. We are in the process of integrating our development to Zope 3 which is quite
different from Zope 2. It requires a lot of re-write in order to take advantages of the new
mechanism of service interface however thanks to Plone Achetypes we can easily regenerate
code hence we don't anticipate the migration to be too hard.

● Thank to Archetypes, evolving the code is much simpler.

● Robustness was definitely a criterion. Prior to taking the final decision to go with Plone, I created

the city website and let it run for close to a year. It almost had no problem as compare to the
previous city website in ColdFusion that crashed much more often

● More over, my interoperability test showed that the Plone/Zope alternative was more robust

once integrated with our old application in Informix-4GL

Q9: How did you evaluate this criterion?

Usability: We looked at mailing lists to determine user satisfaction

 Copyright QUALOSS Consortium

81

Measurement Requirements Specifications

Deliverable ID: D1.2

Page : 82 of 88

Version: 1.3
Date: Mar 15, 07

Status : Proposal
Confid : Restricted

Support: Look at activity in mailing lists

Answer

● The evaluation was done hands on and also by interacting with F/OSS communities e.g. the

Plone community or the Informix-4GL community

● As a public body, we had the time to really evaluate the quality criteria related to robustness and

evolvability. In our case, we tested robustness by letting the city's website written in Plone run
over a one-year period.

● We also interacted with the Plone community and verified they were eager to communicate

their knowledge so that we could later build an in-house expertise and master the solution we
develop.

Q10: If not evaluated: Why did you not evaluate the criterion?

Reliability: We did not know how to test the product for reliability

Answer

● They were evaluated so question skipped

Q11: How important is this criterion to you?

Usability: 8 (We have to give the product to untrained users, usability is fairly critical.)

Support: 10 (If we have questions, they need to be answered really quickly, because this usually
means that our sales process could be stopped until the question is resolved)

Reliability: 7 (...)

For this question, I (Jean-Christophe) suggested the different quality criteria below to the interviewee
and he scored them.

Answer

● Functionality: 10

● Usability: 9 (by Usability, Joel specified that he meant the ability to master a product at all its

level so that his team could later shape their development to meet any quality concerns. For
example, modular solution to increase evolvability,

● Support: 9

● Reliability:9

● Portability: 8

● Robustness: 8

● Evolvability: 7

● Performance: 5

 Copyright QUALOSS Consortium

82

Measurement Requirements Specifications

Deliverable ID: D1.2

Page : 83 of 88

Version: 1.3
Date: Mar 15, 07

Status : Proposal
Confid : Restricted

● Testability: 8 (we believe it is a important criterion for a successful open source solution and

since we release our development on the top of Plone under the GPL so other cities can use it
it, it is important we can write unit tests for all our development)

INTERVIEW 9

Organizational Information

Date of Interview 06/11/06

Interviewer MERIT

Start Time 11:00

Context / Domain Health care / hospital

Interview Questions

Q1: For which types of purposes/systems do you use F/OSS products?

Time: 01:00

We only use it for firewall, a stripped down version of Linux. Besides, on a picture achieving system for
radiology pictures, we have a server that sits between SAN (Storage Area Network) and PACS (Picture
Archiving and Communication System), and that is also Linux based.

Q2: Which F/OSS products do you use?

The stripped version of Linux is arranged by Nokia who delivers the hardware, and organizes it with
Check Point, which is the company for the firewall software.

We did also consider to use OpenOffice on the desktop, but if you look at the lock in and compatibility
with other products we have it is impossible.

Q3: How do you use F/OSS products?

Very limited on the server side, not on the desktop side.

Q4: Why did you choose these F/OSS components?

We did in principle not choose ourselves to use open source; - or, for the firewall we did, because if you
lay windows under here you already have a leak in your firewall, - but for the server between the SAN
and PACS it is a choice by the company delivering the solution to us, so we had no choice. They said
they always do Linux, so we had to take it.

Q5: To your knowledge, do you achieve business goals through OSS
usage?

No, there are not really OSS products for health care. Only OpenOffice, that I could think of considering
for health care. If there were real OSS alternatives comparable to the available proprietary solutions in
the market, it would be an alternative to be seriously considered for us.

 Copyright QUALOSS Consortium

83

Measurement Requirements Specifications

Deliverable ID: D1.2

Page : 84 of 88

Version: 1.3
Date: Mar 15, 07

Status : Proposal
Confid : Restricted

Q6: What are criteria that F/OSS components need to fulfill to be
appropriate?

Good service, fulfill your requirements, continuity must be assured, and supported by supplier.

Highly depends on the product, OpenOffice should be integrateable with the whole hospital information
infrastructure, and nobody supplies or supports this, while it is supported for Word. It is very hard to get it
compatible with all the special software used in the organization.

Q7: How did you evaluate these criteria?

Look at the supplier of the software, if they seem reliable. We want big firms with reputation. And you
compare yourself to other hospitals, nobody wants to be the first implementing a new software package.
The risk is too high if it goes wrong.

Q8: Did you consider any criteria related to Robustness and Evolvability?

I would not know what that would be, specifically.

Q9: How did you evaluate this criterion?

Q10: If not evaluated: Why did you not evaluate the criterion?

Q11: How important is this criterion to you?

Time:05:48

--> We followed ISO/IEC 9126/1 list as URJC did, to grade this and give reason to get some more real
answers.

Maturity: 9 – very important it is stable. You need to assure the continuity. But it depends what you need
it for. If it is critical for your processes it is very high, but obviously for less critical it is less important. We
have own test-servers to test new software, and also for redundancy. For every application they in
principle need a test server.

Fault tolerance: 9 (-- some unsureness if a high mark means accept a lot of fault or not --) for company
critical processes, of real health care. Further, it obviously depends on how critical a processes is. For
the health processes it is very important to have no error. For example, the quality of health care can be
influenced by the software. If you have to send people home because you can not work.

Maintainability: 8- We would never want to do this ourselves, but it is very important.

Analyzability: Dont understand

Changeability: 7 - Can be standard.

Stability: 8 – critical, must be stabile, cannot fall out.

Testability: 7 – you test it once and you assume it is fine. Otherwise you will discover it with time.

 Copyright QUALOSS Consortium

84

Measurement Requirements Specifications

Deliverable ID: D1.2

Page : 85 of 88

Version: 1.3
Date: Mar 15, 07

Status : Proposal
Confid : Restricted

Adaptability: For users to learn to work with it? -- for the software itself, parameters? 8 -
Upgrades/patches are very important.

Installability: 7 – you do not want to spend too much time on it and it should be possible to interpret it.

Coexistence: ? - 9 – it is a requirement, so possibly a 10. We run many applications.

Replacability: 6 – if it is a good product you dont change it so easy.

Safety: 9 – privacy and such. Safety, that everything you fill in is correctly recorded and nothing goes
wrong that you do not discover. For example, if you record the blood group of someone, that it is nothing
wrong in a routine so the incorrect numbers is given.

INTERVIEW 10

Organizational Information

Date of Interview 26/10/2006

Interviewer URJC

Start Time 11:00

Context / Domain Services company

Interview Questions

Q1: For which types of purposes/systems do you (would you) use F/OSS
products?

This is a company whose main goals are to get benefits from advertisements. Their business strategy
consists of offering services. They are orientated to offer some services, on the other hand clients
sometimes have to receive some publicity from the company and partners.

the company works with OSS for email platform. They have a big infrastructure, however they don't
use OSS for all their platform.

Q2: Which F/OSS products do you use? (Have you considered any
concrete products you would use?)

We have to differ between applications.

Server and Desktop: Debian and Red Hat.

Email server: Squirrel.

Data base: MySql.

Libraries: OSS Java libraries working over Microsoft platform (ISS) or Apache server.

Other services: OSS forums.

 Copyright QUALOSS Consortium

85

Measurement Requirements Specifications

Deliverable ID: D1.2

Page : 86 of 88

Version: 1.3
Date: Mar 15, 07

Status : Proposal
Confid : Restricted

Q3: How do you use F/OSS products?

When we need to cover a new functionality in our platform we analyze the solutions, including F/OSS.
We download the product, test it and if we are happy
with it (it is stable and covers our needs) we deploy it in production.

Q4: Why did you choose these F/OSS components?

the company does not have specific requirements selecting OSS. They like software they have found as
good software. Sometimes “good software” means software which has
been used and it has had good results in another companies.

At the moment, the company is migrating email platform from others countries. the company works with
all countries from South America. Thus, they need a powerful email server due to potential million users.

Q5: To your knowledge, do you achieve business goals through F/OSS
usage?

the company earns money from advertisements in its services, like the web portal, forums or the foot of
the email messages. . the company has agreements with big companies to sell their products. Apple is
an example of it. In this moment, if you are a student you can buy laptops cheaper. So, the company
sends advertisements to its clients and some clients accept offers from the company. This company
earns money with OSS in that way.

Q6: What are criteria that F/OSS components need to fulfill to be
appropriate?

the company is a distributed company. It means the company works in some countries and technology
department is distributed. In this moment the company tries to unify some services in Spain. the
company Spain has determinated different criteria to get all information from countries. There will be a
big email data base from users around the world and email services will be centralized. It requires a
policy of migration and, of course, quality requirements.

There are different technologies they use for this purpose. In that case it is very important robustness
and evolvability (and other characteristics) because they manage a big infrastructure and the company
would not like to have surprises during the migration process.

Q7: How did you (would you) evaluate these criteria?

There were criteria when they started to migrate the platform to Spain. First place, they made a criteria
standardization. They looked for a very stable operating system with commercial support. They needed
to build a cluster for email server. Red Hat was the company selected for that purpose.

They needed other software products as data bases. In this way they were searching and found MySql
as a solution. They needed velocity and stability in that case, and MySql was selected.

the company platforms in the world had to use the same file system to start the
migration process and the same version of MySql.

 Copyright QUALOSS Consortium

86

Measurement Requirements Specifications

Deliverable ID: D1.2

Page : 87 of 88

Version: 1.3
Date: Mar 15, 07

Status : Proposal
Confid : Restricted

Q8: Did you (would you) consider any criteria related to Robustness and
Evolvability?

the company does not have critical systems. They offer services and they do not need extra functionality
related to strong security, quick processes, etc. the company only has to
be worried about personal data protection and other Spanish laws.

It is important robustness and evolvability. They think is more important evolvability. There are other
types of requirements, such as managerial, political and, of course quality requirements.

Respect to evolvability, the company likes software easily updating. If a software changes its own
design, such as data base manager or similar, in following versions. It is not a good point for this
software and probably it will be rejected in future.

Robustness is not too much important. We have a criterion related to robustness. We prefer stability and
evolvability before robustness. Probably next versions will be better and developers will take into
account it.

Q9: How did you evaluate this criterion?

Q10: If not evaluated: Why did you not evaluate the criterion?

Q11: How important is this criterion to you?

We were talking to the company about different criteria. They made a list of different
possibilities and its marks.

We took as reference ISO/IEC 9126/1. This standard names some characteristics the
company thought were interesting. Marks are over 10 points.

Maturity: 9 – the company thinks maturity is very important. They do not use tools which are not mature
and they do not develop them. If they need something probably they will look for another tool on net.

Fault tolerance: 6 – That characteristic is not important. the company does not have
critic services. Thus they do not need a strong fault tolerance policy.

Maintaniability: 9 – They look for tool whose maintaniability was very easy and comfortable.

Analizability: 9 the company does not use software which is packed. An example is
an .exe program in Microsoft platform.

Changeability: 9 – the company business model is based in web services. They look for tools which
could be change in a easily way. Sometimes they need to add a feature or to add their logo to some
tools. It is very important to have multilanguage tools. the company works with Portuguese
and Spanish speakers.

Stability: 10 – That is the most important characteristic they named. They do not have critical
environment, but they look for having less and less problems with installed programs.

Testability: 8 – This is an important characteristic. If the company uses a software it
means that software has been tested. If they can not test a software they reject it.

 Copyright QUALOSS Consortium

87

Measurement Requirements Specifications

Deliverable ID: D1.2

Page : 88 of 88

Version: 1.3
Date: Mar 15, 07

Status : Proposal
Confid : Restricted

Adaptability: 6 – It is not important for them.

Installability: 8 – They do not dedicate a lot of time to install software. If it does not work they reject it.

Coexistence: 9 the company does not want heavy programs. They prefer light
software and it can coexist with other programs in the same computer.

Replaceability: 7 – When a software is installed it will not be replaced for a long
time. Thus, this characteristic is not very necessary.

 Copyright QUALOSS Consortium

88

	1 Introduction
	1.1 Motivation
	1.2 Goal
	1.3 Strategy For Workpackage 1
	1.4 Approach
	1.5 Structure of the Deliverable

	2 Terminology
	2.1 GQM
	2.2 Software Quality
	2.3 Software Quality Models
	2.4 Structure of a Quality Model
	2.5 Measurement

	3 Quality Models State of the Art
	3.1 Definition of Evolvability and Robustness from F/OSS Assessment Methodologies
	3.1.1 QSOS
	3.1.2 Open Source Maturity Model (Cap Gemini)
	3.1.3 Open Business Readiness Rating (OpenBRR)
	3.1.4 Comparing QSOS, OSMM and OpenBRR

	3.2 Definition of Evolvability and Robustness from the State of the Art and Practice
	3.2.1 The Historic Models: McCall and Boehm
	3.2.2 Quality Model of the Deutsche Gesellschaft für Qualität
	3.2.3 FURPS/FURPS+
	3.2.4 Quality Model of the NASA SATC
	3.2.5 The Standard: ISO9126

	3.3 Discussion

	4 Results From Interviews
	4.1 Usage Scenarios
	4.2 Quality Model From Interviews

	5 Consolidated Measurement Requirements for QualOSS
	5.1 Business Goals
	5.2 Measurement Goals
	5.3 Definition of QualOSS Quality Indicators
	5.3.1 Rationale
	5.3.2 Evolvability
	5.3.3 Robustness
	5.3.4 Quality Factors Not Considered by QualOSS

	6 Validation Plan
	6.1 Goal Category 1: Evaluation of appropriateness of QualOSS model
	6.2 Goal Category 2: Evaluation of QualOSS model impact:

	7 Summary and Conclusions
	References
	Appendix A: Usage Scenario Interview Sheet
	Instructions
	Organizational Information
	Interview Introduction
	Interview Questions

	Appendix B: Interview Results
	Interview 1
	Organizational Information
	Interview Questions

	Interview 2
	Organizational Information
	Interview Questions

	Interview 3
	Organizational Information
	Interview Questions

	Interview 4
	Organizational Information
	Interview Questions

	Interview 5
	Organizational Information
	Interview Questions

	Interview 6
	Organizational Information
	Interview Questions

	Interview 7
	Organizational Information
	Interview Questions

	Interview 8
	Organizational Information
	Interview Questions

	Interview 9
	Organizational Information
	Interview Questions

	Interview 10
	Organizational Information
	Interview Questions

